Suppr超能文献

人工智能和机器学习在体育中的应用:概念、应用、挑战和未来展望。

Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives.

机构信息

Department of Physical Therapy, Federal Institute of Rio de Janeiro, Rio de Janeiro, Brazil; Pain in Motion Research Group, Department of Physical Therapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; School of Physical and Occupational Therapy, McGill University, Montreal, Canada.

Nucleus of Neuroscience and Behavior and Nucleus of Applied Neuroscience, Universidade de Sao Paulo (USP), Sao Paulo, Brazil; Research, Technology, and Data Science Office, Grupo Superador, Sao Paulo, Brazil.

出版信息

Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21.

Abstract

BACKGROUND

The development and application of Artificial Intelligence (AI) and Machine Learning (ML) in healthcare have gained attention as a promising and powerful resource to change the landscape of healthcare. The potential of these technologies for injury prediction, performance analysis, personalized training, and treatment comes with challenges related to the complexity of sports dynamics and the multidimensional aspects of athletic performance.

OBJECTIVES

We aimed to present the current state of AI and ML applications in sports science, specifically in the areas of injury prediction, performance enhancement, and rehabilitation. We also examine the challenges of incorporating AI and ML into sports and suggest directions for future research.

METHOD

We conducted a comprehensive literature review, focusing on publications related to AI and ML applications in sports. This review encompassed studies on injury prediction, performance analysis, and personalized training, emphasizing the AI and ML models applied in sports.

RESULTS

The findings highlight significant advancements in injury prediction accuracy, performance analysis precision, and the customization of training programs through AI and ML. However, future studies need to address challenges such as ethical considerations, data quality, interpretability of ML models, and the integration of complex data.

CONCLUSION

AI and ML may be useful for the prevention, detection, diagnosis, and treatment of health conditions. In this Masterclass paper, we introduce AI and ML concepts, outline recent breakthroughs in AI technologies and their applications, identify the challenges for further progress of AI systems, and discuss ethical issues, clinical and research opportunities, and future perspectives.

摘要

背景

人工智能(AI)和机器学习(ML)在医疗保健领域的发展和应用引起了关注,它们是改变医疗保健格局的有前途和强大的资源。这些技术在损伤预测、性能分析、个性化训练和治疗方面的潜力,与运动动态的复杂性和运动表现的多维方面相关的挑战并存。

目的

我们旨在介绍 AI 和 ML 在运动科学中的应用现状,特别是在损伤预测、性能增强和康复领域。我们还检查了将 AI 和 ML 纳入运动的挑战,并提出了未来研究的方向。

方法

我们进行了全面的文献综述,重点关注与 AI 和 ML 在运动中的应用相关的出版物。本综述包括了关于损伤预测、性能分析和个性化训练的研究,强调了应用于运动的 AI 和 ML 模型。

结果

研究结果突出了 AI 和 ML 在损伤预测准确性、性能分析精度和通过 AI 和 ML 定制训练计划方面的显著进展。然而,未来的研究需要解决一些挑战,如伦理考虑、数据质量、ML 模型的可解释性以及复杂数据的整合。

结论

AI 和 ML 可能有助于预防、检测、诊断和治疗健康状况。在本硕士论文中,我们介绍了 AI 和 ML 概念,概述了 AI 技术的最新突破及其应用,确定了 AI 系统进一步发展的挑战,并讨论了伦理问题、临床和研究机会以及未来展望。

相似文献

1
Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives.
Braz J Phys Ther. 2024 May-Jun;28(3):101083. doi: 10.1016/j.bjpt.2024.101083. Epub 2024 May 21.
2
Artificial Intelligence in Drug Formulation and Development: Applications and Future Prospects.
Curr Drug Metab. 2023;24(9):622-634. doi: 10.2174/0113892002265786230921062205.
3
Revolutionizing Patient Care: A Comprehensive Review of Artificial Intelligence Applications in Anesthesia.
Cureus. 2023 Dec 4;15(12):e49887. doi: 10.7759/cureus.49887. eCollection 2023 Dec.
5
Applications of Artificial Intelligence in Psychiatric Nursing: A Scope Review.
Stud Health Technol Inform. 2024 Jul 24;315:74-80. doi: 10.3233/SHTI240109.
7
Long-Term Assessment of Rehabilitation Treatment of Sports through Artificial Intelligence Research.
Comput Math Methods Med. 2021 Dec 22;2021:4980718. doi: 10.1155/2021/4980718. eCollection 2021.
8
Overview and Clinical Applications of Artificial Intelligence and Machine Learning in Cardiac Anesthesiology.
J Cardiothorac Vasc Anesth. 2024 May;38(5):1211-1220. doi: 10.1053/j.jvca.2024.02.004. Epub 2024 Feb 15.
9
Artificial intelligence in reproductive medicine.
Reproduction. 2019 Oct;158(4):R139-R154. doi: 10.1530/REP-18-0523.
10
Artificial Intelligence and Multiple Sclerosis.
Curr Neurol Neurosci Rep. 2024 Aug;24(8):233-243. doi: 10.1007/s11910-024-01354-x. Epub 2024 Jun 28.

引用本文的文献

3
Quantifying training response in cycling based on cardiovascular drift using machine learning.
Front Artif Intell. 2025 Jul 4;8:1623384. doi: 10.3389/frai.2025.1623384. eCollection 2025.
4
Hybrid feature-time series neural network for predicting ACL forces in martial artists with resistive braces after reconstruction.
Front Bioeng Biotechnol. 2025 May 9;13:1579472. doi: 10.3389/fbioe.2025.1579472. eCollection 2025.
5
Ethical implications of artificial intelligence in sport: A systematic scoping review.
J Sport Health Sci. 2025 Apr 30:101047. doi: 10.1016/j.jshs.2025.101047.

本文引用的文献

1
An Overview of Machine Learning Applications in Sports Injury Prediction.
Cureus. 2023 Sep 28;15(9):e46170. doi: 10.7759/cureus.46170. eCollection 2023 Sep.
3
Bias in artificial intelligence algorithms and recommendations for mitigation.
PLOS Digit Health. 2023 Jun 22;2(6):e0000278. doi: 10.1371/journal.pdig.0000278. eCollection 2023 Jun.
5
An overview of Human Action Recognition in sports based on Computer Vision.
Heliyon. 2022 Jun 5;8(6):e09633. doi: 10.1016/j.heliyon.2022.e09633. eCollection 2022 Jun.
6
The Disruption of Trust in the Digital Transformation Leading to Health 4.0.
Front Digit Health. 2022 Mar 28;4:815573. doi: 10.3389/fdgth.2022.815573. eCollection 2022.
8
AI in health and medicine.
Nat Med. 2022 Jan;28(1):31-38. doi: 10.1038/s41591-021-01614-0. Epub 2022 Jan 20.
9
Health 4.0: On the Way to Realizing the Healthcare of the Future.
IEEE Access. 2020 Nov 18;8:211189-211210. doi: 10.1109/ACCESS.2020.3038858. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验