Suppr超能文献

21世纪拉丁美洲的森林砍伐主要发生在典型的成熟森林之外。

Deforestation in Latin America in the 2000s predominantly occurred outside of typical mature forests.

作者信息

Zhang Zhiyu, Ni Wenjian, Quegan Shaun, Chen Jingming, Gong Peng, Rodriguez Luiz Carlos Estraviz, Guo Huadong, Shi Jiancheng, Liu Liangyun, Li Zengyuan, He Yating, Liu Qinhuo, Shimabukuro Yosio, Sun Guoqing

机构信息

Key Laboratory of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China.

University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China.

出版信息

Innovation (Camb). 2024 Mar 12;5(3):100610. doi: 10.1016/j.xinn.2024.100610. eCollection 2024 May 6.

Abstract

The role of tropical forests in the global carbon budget remains controversial, as carbon emissions from deforestation are highly uncertain. This high uncertainty arises from the use of either fixed forest carbon stock density or maps generated from satellite-based optical reflectance with limited sensitivity to biomass to generate accurate estimates of emissions from deforestation. New space missions aiming to accurately map the carbon stock density rely on direct measurements of the spatial structures of forests using lidar and radar. We found that lost forests are special cases, and their spatial structures can be directly measured by combining archived data acquired before and after deforestation by space missions principally aimed at measuring topography. Thus, using biomass mapping, we obtained new estimates of carbon loss from deforestation ahead of forthcoming space missions. Here, using a high-resolution map of forest loss and the synergy of radar and lidar to estimate the aboveground biomass density of forests, we found that deforestation in the 2000s in Latin America, one of the severely deforested regions, mainly occurred in forests with a significantly lower carbon stock density than typical mature forests. Deforestation areas with carbon stock densities lower than 20.0, 50.0, and 100.0 Mg C/ha accounted for 42.1%, 62.0%, and 83.3% of the entire deforested area, respectively. The average carbon stock density of lost forests was only 49.13 Mg C/ha, which challenges the current knowledge on the carbon stock density of lost forests (with a default value 100 Mg C/ha according to the Intergovernmental Panel on Climate Change Tier 1 estimates, or approximately 112 Mg C/ha used in other studies). This is demonstrated over both the entire region and the footprints of the spaceborne lidar. Consequently, our estimate of carbon loss from deforestation in Latin America in the 2000s was 253.0 ± 21.5 Tg C/year, which was considerably less than existing remote-sensing-based estimates, namely 400-600 Tg C/year. This indicates that forests in Latin America were most likely not a net carbon source in the 2000s compared to established carbon sinks. In previous studies, considerable effort has been devoted to rectify the underestimation of carbon sinks; thus, the overestimation of carbon emissions should be given sufficient consideration in global carbon budgets. Our results also provide solid evidence for the necessity of renewing knowledge on the role of tropical forests in the global carbon budget in the future using observations from new space missions.

摘要

热带森林在全球碳预算中的作用仍存在争议,因为森林砍伐产生的碳排放具有高度不确定性。这种高度不确定性源于使用固定的森林碳储量密度或基于卫星光学反射率生成的地图,这些地图对生物量的敏感度有限,无法准确估算森林砍伐产生的排放量。旨在精确绘制碳储量密度的新太空任务依赖于使用激光雷达和雷达直接测量森林的空间结构。我们发现,消失的森林是特殊情况,其空间结构可以通过结合主要旨在测量地形的太空任务在森林砍伐前后获取的存档数据直接测量。因此,通过生物量测绘,我们在即将到来的太空任务之前获得了森林砍伐造成的碳损失的新估计值。在这里,利用森林损失的高分辨率地图以及雷达和激光雷达的协同作用来估计森林的地上生物量密度,我们发现,2000年代拉丁美洲作为森林砍伐严重的地区之一,其森林砍伐主要发生在碳储量密度明显低于典型成熟森林的森林中。碳储量密度低于20.0、50.0和100.0 Mg C/公顷的森林砍伐面积分别占整个森林砍伐面积的42.1%、62.0%和83.3%。消失森林的平均碳储量密度仅为49.13 Mg C/公顷,这对目前关于消失森林碳储量密度的认识(根据政府间气候变化专门委员会一级估计的默认值为100 Mg C/公顷,或其他研究中使用的约112 Mg C/公顷)提出了挑战。这在整个区域和星载激光雷达的足迹上都得到了证明。因此,我们对2000年代拉丁美洲森林砍伐造成的碳损失的估计为每年253.0±21.5 Tg C,这大大低于现有的基于遥感的估计值,即每年400 - 600 Tg C。这表明,与既定的碳汇相比,2000年代拉丁美洲的森林很可能不是净碳源。在以前的研究中,人们付出了相当大的努力来纠正碳汇的低估问题;因此,在全球碳预算中应充分考虑碳排放的高估问题。我们的结果也为未来利用新太空任务的观测结果更新关于热带森林在全球碳预算中作用的知识的必要性提供了确凿证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9da/10998227/ac91bf5e9bce/fx1.jpg

相似文献

1
Deforestation in Latin America in the 2000s predominantly occurred outside of typical mature forests.
Innovation (Camb). 2024 Mar 12;5(3):100610. doi: 10.1016/j.xinn.2024.100610. eCollection 2024 May 6.
2
Determination of tropical deforestation rates and related carbon losses from 1990 to 2010.
Glob Chang Biol. 2014 Aug;20(8):2540-54. doi: 10.1111/gcb.12605. Epub 2014 May 30.
3
Benchmark map of forest carbon stocks in tropical regions across three continents.
Proc Natl Acad Sci U S A. 2011 Jun 14;108(24):9899-904. doi: 10.1073/pnas.1019576108. Epub 2011 May 31.
4
Time-series maps of aboveground carbon stocks in the forests of central Sumatra.
Carbon Balance Manag. 2015 Sep 17;10:23. doi: 10.1186/s13021-015-0034-5. eCollection 2015 Dec.
5
Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.
PLoS One. 2015 May 7;10(5):e0126754. doi: 10.1371/journal.pone.0126754. eCollection 2015.
6
Forest degradation and biomass loss along the Chocó region of Colombia.
Carbon Balance Manag. 2019 Mar 23;14(1):2. doi: 10.1186/s13021-019-0117-9.
7
Near-real time aboveground carbon emissions in Peru.
PLoS One. 2020 Nov 2;15(11):e0241418. doi: 10.1371/journal.pone.0241418. eCollection 2020.
8
Spatial distribution of degradation and deforestation of palm swamp peatlands and associated carbon emissions in the Peruvian Amazon.
J Environ Manage. 2024 Feb;351:119665. doi: 10.1016/j.jenvman.2023.119665. Epub 2023 Dec 12.
10
Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.
Sci Adv. 2016 May 13;2(5):e1501639. doi: 10.1126/sciadv.1501639. eCollection 2016 May.

引用本文的文献

1
Foundation models and intelligent decision-making: Progress, challenges, and perspectives.
Innovation (Camb). 2025 May 12;6(6):100948. doi: 10.1016/j.xinn.2025.100948. eCollection 2025 Jun 2.
2
Artificial intelligence for geoscience: Progress, challenges, and perspectives.
Innovation (Camb). 2024 Aug 22;5(5):100691. doi: 10.1016/j.xinn.2024.100691. eCollection 2024 Sep 9.

本文引用的文献

1
Penetrating remote sensing: Next-generation remote sensing for transparent earth.
Innovation (Camb). 2023 Sep 29;4(6):100519. doi: 10.1016/j.xinn.2023.100519. eCollection 2023 Nov 13.
2
China's current forest age structure will lead to weakened carbon sinks in the near future.
Innovation (Camb). 2023 Sep 16;4(6):100515. doi: 10.1016/j.xinn.2023.100515. eCollection 2023 Nov 13.
3
What can the Glasgow Declaration on Forests bring to global emission reduction?
Innovation (Camb). 2022 Aug 31;3(6):100307. doi: 10.1016/j.xinn.2022.100307. eCollection 2022 Nov 8.
4
Global and regional drivers of land-use emissions in 1961-2017.
Nature. 2021 Jan;589(7843):554-561. doi: 10.1038/s41586-020-03138-y. Epub 2021 Jan 27.
5
Comment on "Tropical forests are a net carbon source based on aboveground measurements of gain and loss".
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aar3629. Epub 2019 Jan 10.
6
The tropical forest carbon cycle and climate change.
Nature. 2018 Jul;559(7715):527-534. doi: 10.1038/s41586-018-0300-2. Epub 2018 Jul 25.
7
Tropical forests are a net carbon source based on aboveground measurements of gain and loss.
Science. 2017 Oct 13;358(6360):230-234. doi: 10.1126/science.aam5962. Epub 2017 Sep 28.
8
Biomass resilience of Neotropical secondary forests.
Nature. 2016 Feb 11;530(7589):211-4. doi: 10.1038/nature16512. Epub 2016 Feb 3.
9
Can carbon emissions from tropical deforestation drop by 50% in 5 years?
Glob Chang Biol. 2016 Apr;22(4):1336-47. doi: 10.1111/gcb.13153. Epub 2016 Feb 9.
10
An integrated pan-tropical biomass map using multiple reference datasets.
Glob Chang Biol. 2016 Apr;22(4):1406-20. doi: 10.1111/gcb.13139. Epub 2016 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验