Suppr超能文献

基于化学计量学的近红外(NIR)和中红外(MIR)光谱法用于藏红花鉴定和掺假检测的比较

Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection.

作者信息

Amirvaresi Arian, Nikounezhad Nastaran, Amirahmadi Maryam, Daraei Bahram, Parastar Hadi

机构信息

Department of Chemistry, Sharif University of Technology, Tehran, Iran.

Food and Drug Laboratory Research Center, Food and Drug Organization, Tehran, Iran.

出版信息

Food Chem. 2021 May 15;344:128647. doi: 10.1016/j.foodchem.2020.128647. Epub 2020 Nov 16.

Abstract

In this work, the potential of near-infrared (NIR) and mid-infrared (MIR) spectroscopy along with chemometrics was investigated for authentication and adulteration detection of Iranian saffron samples. First, authentication of one-hundred saffron samples was examined by principal component analysis (PCA). The results showed the NIR spectroscopy can better predict the origin of samples than the MIR. Next, partial least squares-discriminant analysis (PLS-DA) was developed to detect four common plant-derived adulterants (i.e., saffron style, calendula, safflower, and rubia). In all cases, PLS-DA classification figures of merit in terms of sensitivity, specificity, error rate and accuracy were satisfactory for both NIR and MIR datasets. The built models were then successfully validated using test set and also commercial samples. Finally, partial least squares regression (PLSR) was used to estimate the amount of adulteration. In this case, only NIR showed a good performance with regression coefficients (R) in range of 0.95-0.99.

摘要

在这项工作中,研究了近红外(NIR)和中红外(MIR)光谱结合化学计量学用于伊朗藏红花样品的真伪鉴定和掺假检测的潜力。首先,通过主成分分析(PCA)对100个藏红花样品进行真伪鉴定。结果表明,近红外光谱比中红外光谱能更好地预测样品的来源。接下来,开发了偏最小二乘判别分析(PLS-DA)来检测四种常见的植物源性掺假物(即藏红花花柱、金盏花、红花和茜草)。在所有情况下,近红外和中红外数据集在灵敏度、特异性、错误率和准确率方面的PLS-DA分类品质因数都令人满意。然后使用测试集和商业样品成功验证了所建立的模型。最后,使用偏最小二乘回归(PLSR)来估计掺假量。在这种情况下,只有近红外显示出良好的性能,回归系数(R)在0.95-0.99范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验