Suppr超能文献

一种用于表情符号聚焦讽刺检测的注意力方法。

An attention approach to emoji focused sarcasm detection.

作者信息

Grover Vandita, Banati Hema

机构信息

Department of Computer Science, University of Delhi, India.

Dyal Singh College, University of Delhi, India.

出版信息

Heliyon. 2024 Aug 21;10(17):e36398. doi: 10.1016/j.heliyon.2024.e36398. eCollection 2024 Sep 15.

Abstract

Emojis play a nuanced role in digital communication and have a potential to convey sarcastic intent as they often offer non-explicit and sometimes ambiguous cues. This ambiguity has a potential to fuel hate-speech, trolling, or cyber-bullying under the guise of sarcasm. There have been numerous studies that employ modalities like audio, images, videos, emojis or a combination of modalities to detect sarcasm in online text. There is limited research that focuses solely on the impact of emojis in discerning sarcasm. Therefore, in this work we use popular attention networks to capture if sarcasm classification can be improved when emojis are present in text. We experiment with LSTM, Bi-LSTM, and attention networks and compare the results with the fine-tuned benchmark DeepMoji model. Our experiments demonstrate that the emojis can help improve sarcasm classification. These models outperform the benchmark DeepMoji model on two different test datasets on Matthew's correlation coefficient and Area under the curve metrics. Our proposed models surpass DeepMoji by an increase in and when compared for MCC and an increase in and for the ROC-AUC metric.

摘要

表情符号在数字通信中扮演着微妙的角色,并且有可能传达讽刺意图,因为它们常常提供不明确且有时含糊的线索。这种含糊性有可能在讽刺的幌子下助长仇恨言论、网络骚扰或网络欺凌。已经有许多研究采用音频、图像、视频、表情符号等模态或模态组合来检测在线文本中的讽刺。仅有有限的研究专门关注表情符号在识别讽刺方面的影响。因此,在这项工作中,我们使用流行的注意力网络来探究当文本中存在表情符号时,讽刺分类是否能够得到改善。我们使用长短期记忆网络(LSTM)、双向长短期记忆网络(Bi-LSTM)和注意力网络进行实验,并将结果与经过微调的基准模型DeepMoji进行比较。我们的实验表明,表情符号有助于改善讽刺分类。在马修斯相关系数和曲线下面积指标方面,这些模型在两个不同的测试数据集上优于基准DeepMoji模型。与DeepMoji相比,我们提出的模型在马修斯相关系数(MCC)上分别提高了[X]和[X],在ROC-AUC指标上分别提高了[X]和[X]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1888/11402933/e8c58a4600cb/gr2.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验