Suppr超能文献

利用质子核磁共振和机器学习对细菌感染和新冠肺炎中的脂蛋白和糖蛋白谱进行差异分析。

Differential analysis of lipoprotein and glycoprotein profiles in bacterial infections and COVID-19 using proton nuclear magnetic resonance and machine learning.

作者信息

Iftimie Simona, Amigó Núria, Martínez-Micaelo Neus, López-Azcona Ana F, Martínez-Navidad Cristian, Castañé Helena, Jiménez-Franco Andrea, Ribalta Josep, Parra Sandra, Castro Antoni, Camps Jordi, Joven Jorge

机构信息

Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.

Department of Medicine and Surgery, Universitat Rovira i Virgili, Reus, Spain.

出版信息

Heliyon. 2024 Aug 28;10(17):e37115. doi: 10.1016/j.heliyon.2024.e37115. eCollection 2024 Sep 15.

Abstract

BACKGROUND

We scrutinized variations in the proton nuclear magnetic resonance (H NMR) lipoprotein and glycoprotein profiles among hospitalized individuals with infectious diseases.

METHODS

We obtained sera from 124 patients with COVID-19, 50 patients with catheter-related bacterial infections, and 50 healthy volunteers. Results were interpreted using machine learning.

RESULTS

COVID-19 patients had bigger and more abundant VLDL particles than the control group and higher VLDL-cholesterol and VLDL-triglyceride concentrations. Patients with bacterial infections showed similar trends, but differences often did not reach statistical significance. Both types of patients showed lower LDL-cholesterol concentrations than the controls. LDL were larger, and the number of particles was lower than that of the healthy individuals. HDL particles had decreased cholesterol and increased triglycerides. Small particles were reduced. Glycoproteins were increased in both groups of patients. All these alterations were more pronounced in COVID-19 patients than those with bacterial infections. The diagnostic accuracy of these profiles exceeded 90 % when distinguishing between healthy individuals and patients, and 85 % when differentiating between the two patient groups.

CONCLUSION

Our findings highlight the potential of H NMR analysis for lipoproteins and glycoproteins as infection biomarkers. Additionally, they reveal differences between viral and bacterial infections, shedding light on an area with promising clinical significance.

摘要

背景

我们仔细研究了住院传染病患者的质子核磁共振(H NMR)脂蛋白和糖蛋白谱的变化。

方法

我们从124例新冠肺炎患者、50例导管相关细菌感染患者和50名健康志愿者中获取血清。使用机器学习对结果进行解读。

结果

新冠肺炎患者的极低密度脂蛋白(VLDL)颗粒比对照组更大且更丰富,极低密度脂蛋白胆固醇和极低密度脂蛋白甘油三酯浓度更高。细菌感染患者呈现类似趋势,但差异通常未达到统计学显著性。两类患者的低密度脂蛋白胆固醇浓度均低于对照组。低密度脂蛋白更大,颗粒数量低于健康个体。高密度脂蛋白颗粒的胆固醇含量降低,甘油三酯含量增加。小颗粒减少。两组患者的糖蛋白均增加。所有这些改变在新冠肺炎患者中比细菌感染患者更为明显。在区分健康个体和患者时,这些谱的诊断准确率超过90%,在区分两组患者时为85%。

结论

我们的研究结果突出了H NMR分析脂蛋白和糖蛋白作为感染生物标志物的潜力。此外,它们揭示了病毒感染和细菌感染之间的差异,为一个具有潜在临床意义的领域提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e31/11402779/650fc80cc15d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验