Suppr超能文献

用于诊断胃部感染的新型内镜技术:系统评价与网状Meta分析

Novel endoscopic techniques for the diagnosis of gastric infection: a systematic review and network meta-analysis.

作者信息

Hao Wenzhe, Huang Lin, Li Xuejun, Jia Hongyu

机构信息

The Graduated School, Anhui University of Chinese Medicine, Hefei, China.

Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.

出版信息

Front Microbiol. 2024 Aug 26;15:1377541. doi: 10.3389/fmicb.2024.1377541. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to conduct a network meta-analysis to compare the diagnostic efficacy of diverse novel endoscopic techniques for detecting gastric infection.

METHODS

From inception to August 2023, literature was systematically searched across Pubmed, Embase, and Web of Science databases. Cochrane's risk of bias tool assessed the methodological quality of the included studies. Data analysis was conducted using the R software, employing a ranking chart to determine the most effective diagnostic method comprehensively. Convergence analysis was performed to assess the stability of the results.

RESULTS

The study encompassed 36 articles comprising 54 observational studies, investigating 14 novel endoscopic techniques and involving 7,230 patients diagnosed with gastric infection. Compared with the gold standard, the comprehensive network meta-analysis revealed the superior diagnostic performance of two new endoscopic techniques, Magnifying blue laser imaging endoscopy (M-BLI) and high-definition magnifying endoscopy with i-scan (M-I-SCAN). Specifically, M-BLI demonstrated the highest ranking in both sensitivity (SE) and positive predictive value (PPV), ranking second in negative predictive value (NPV) and fourth in specificity (SP). M-I-SCAN secured the top position in NPV, third in SE and SP, and fifth in PPV.

CONCLUSION

After thoroughly analyzing the ranking chart, we conclude that M-BLI and M-I-SCAN stand out as the most suitable new endoscopic techniques for diagnosing gastric infection.

SYSTEMATIC REVIEW REGISTRATION

https://inplasy.com/inplasy-2023-11-0051/, identifier INPLASY2023110051.

摘要

目的

本研究旨在进行一项网状Meta分析,以比较多种新型内镜技术检测胃部感染的诊断效能。

方法

从数据库建立至2023年8月,系统检索了PubMed、Embase和Web of Science数据库中的文献。采用Cochrane偏倚风险工具评估纳入研究的方法学质量。使用R软件进行数据分析,采用排序图全面确定最有效的诊断方法。进行收敛性分析以评估结果的稳定性。

结果

该研究纳入36篇文章,包括54项观察性研究,涉及14种新型内镜技术,共7230例被诊断为胃部感染的患者。与金标准相比,综合网状Meta分析显示两种新型内镜技术——放大蓝光成像内镜(M-BLI)和带i-scan的高清放大内镜(M-I-SCAN)具有更优的诊断性能。具体而言,M-BLI在灵敏度(SE)和阳性预测值(PPV)方面排名最高,阴性预测值(NPV)排名第二,特异性(SP)排名第四。M-I-SCAN在NPV方面排名第一,SE和SP方面排名第三,PPV方面排名第五。

结论

通过对排序图的深入分析,我们得出结论,M-BLI和M-I-SCAN是诊断胃部感染最合适的新型内镜技术。

系统评价注册

https://inplasy.com/inplasy-2023-11-0051/,标识符INPLASY2023110051。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33c8/11404567/1f6099581b4c/fmicb-15-1377541-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验