Suppr超能文献

用于锌空气电池驱动水分解的高性能三功能石墨烯夹层异质结嵌入层状晶格电催化剂。

Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting.

作者信息

Kim Dong Won, Kim Jihoon, Choi Jong Hui, Jung Do Hwan, Kang Jeung Ku

机构信息

Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Adv Sci (Weinh). 2024 Nov;11(42):e2408869. doi: 10.1002/advs.202408869. Epub 2024 Sep 17.

Abstract

Zn-air battery (ZAB)-driven water splitting holds great promise as a next-generation energy conversion technology, but its large overpotential, low activity, and poor stability for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) remain obstacles. Here, a trifunctional graphene-sandwiched, heterojunction-embedded layered lattice (G-SHELL) electrocatalyst offering a solution to these challenges are reported. Its hollow core-layered shell morphology promotes ion transport to CoS for OER and graphene-sandwiched MoS for ORR/HER, while its heterojunction-induced internal electric fields facilitate electron migration. The structural characteristics of G-SHELL are thoroughly investigated using X-ray absorption spectroscopy. Additionally, atomic-resolution transmission electron microscopy (TEM) images align well with the DFT-relaxed structures and simulated TEM images, further confirming its structure. It exhibits an approximately threefold smaller ORR charge transfer resistance than Pt/C, a lower OER overpotential and Tafel slope than RuO₂, and excellent HER overpotential and Tafel slope, while outlasting noble metals in terms of durability. Ex situ X-ray photoelectron spectroscopy analysis under varying potentials by examining the peak shifts and ratios (Co/Co and Mo/Mo) elucidates electrocatalytic reaction mechanisms. Furthermore, the ZAB with G-SHELL outperforms Pt/C+RuO in terms of energy density (797 Wh kg) and peak power density (275.8 mW cm), realizing the ZAB-driven water splitting.

摘要

锌空气电池(ZAB)驱动的水分解作为一种下一代能量转换技术具有巨大潜力,但其在氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)方面存在较大过电位、低活性和稳定性差等问题,仍然是障碍。在此,报道了一种三功能的石墨烯夹层、异质结嵌入层状晶格(G-SHELL)电催化剂,它为这些挑战提供了解决方案。其空心核-层状壳形态促进离子向用于OER的CoS和用于ORR/HER的石墨烯夹层MoS传输,而异质结诱导的内部电场促进电子迁移。利用X射线吸收光谱对G-SHELL的结构特征进行了深入研究。此外,原子分辨率透射电子显微镜(TEM)图像与DFT弛豫结构和模拟TEM图像吻合良好,进一步证实了其结构。它的ORR电荷转移电阻比Pt/C小约三倍,OER过电位和塔菲尔斜率比RuO₂低,HER过电位和塔菲尔斜率优异,同时在耐久性方面超过贵金属。通过检查峰位移和比率(Co/Co和Mo/Mo)对不同电位下的非原位X射线光电子能谱分析阐明了电催化反应机理。此外,具有G-SHELL的ZAB在能量密度(797 Wh kg)和峰值功率密度(275.8 mW cm)方面优于Pt/C+RuO,实现了ZAB驱动的水分解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98ab/11558083/9d74e98a1e06/ADVS-11-2408869-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验