Kim Dong Won, Kim Jihoon, Choi Jong Hui, Jung Do Hwan, Kang Jeung Ku
Department of Materials Science & Engineering and NanoCentury Institute, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Adv Sci (Weinh). 2024 Nov;11(42):e2408869. doi: 10.1002/advs.202408869. Epub 2024 Sep 17.
Zn-air battery (ZAB)-driven water splitting holds great promise as a next-generation energy conversion technology, but its large overpotential, low activity, and poor stability for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) remain obstacles. Here, a trifunctional graphene-sandwiched, heterojunction-embedded layered lattice (G-SHELL) electrocatalyst offering a solution to these challenges are reported. Its hollow core-layered shell morphology promotes ion transport to CoS for OER and graphene-sandwiched MoS for ORR/HER, while its heterojunction-induced internal electric fields facilitate electron migration. The structural characteristics of G-SHELL are thoroughly investigated using X-ray absorption spectroscopy. Additionally, atomic-resolution transmission electron microscopy (TEM) images align well with the DFT-relaxed structures and simulated TEM images, further confirming its structure. It exhibits an approximately threefold smaller ORR charge transfer resistance than Pt/C, a lower OER overpotential and Tafel slope than RuO₂, and excellent HER overpotential and Tafel slope, while outlasting noble metals in terms of durability. Ex situ X-ray photoelectron spectroscopy analysis under varying potentials by examining the peak shifts and ratios (Co/Co and Mo/Mo) elucidates electrocatalytic reaction mechanisms. Furthermore, the ZAB with G-SHELL outperforms Pt/C+RuO in terms of energy density (797 Wh kg) and peak power density (275.8 mW cm), realizing the ZAB-driven water splitting.
锌空气电池(ZAB)驱动的水分解作为一种下一代能量转换技术具有巨大潜力,但其在氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)方面存在较大过电位、低活性和稳定性差等问题,仍然是障碍。在此,报道了一种三功能的石墨烯夹层、异质结嵌入层状晶格(G-SHELL)电催化剂,它为这些挑战提供了解决方案。其空心核-层状壳形态促进离子向用于OER的CoS和用于ORR/HER的石墨烯夹层MoS传输,而异质结诱导的内部电场促进电子迁移。利用X射线吸收光谱对G-SHELL的结构特征进行了深入研究。此外,原子分辨率透射电子显微镜(TEM)图像与DFT弛豫结构和模拟TEM图像吻合良好,进一步证实了其结构。它的ORR电荷转移电阻比Pt/C小约三倍,OER过电位和塔菲尔斜率比RuO₂低,HER过电位和塔菲尔斜率优异,同时在耐久性方面超过贵金属。通过检查峰位移和比率(Co/Co和Mo/Mo)对不同电位下的非原位X射线光电子能谱分析阐明了电催化反应机理。此外,具有G-SHELL的ZAB在能量密度(797 Wh kg)和峰值功率密度(275.8 mW cm)方面优于Pt/C+RuO,实现了ZAB驱动的水分解。