Suppr超能文献

基于还原氧化石墨烯/二硫化钼异质结界面相互作用的超快压催化剂。

Ultra-fast Piezocatalysts Enabled By Interfacial Interaction of Reduced Graphene Oxide/MoS Heterostructures.

机构信息

State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China.

Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, College of Engineering Physics, and Center for Advanced Material, Diagnostic Technology, Shenzhen Technology University, Shenzhen, 518118, P. R. China.

出版信息

Adv Mater. 2023 May;35(18):e2212172. doi: 10.1002/adma.202212172. Epub 2023 Mar 21.

Abstract

The catalytic activity has been investigated in 2D materials, and the unique structural and electronic properties contribute to their success in conventional heterogeneous catalysis. Heterojunction-based piezocatalysis has attracted increasing attention due to the band-structure engineering and the enhanced charge carrier separation by prominent piezoelectric effect. However, the piezocatalytic behavior of van der Waals (vdW) heterostructures is still unknown, and the finite active sites, catalyst poisoning, and poor conductivity are challenges for developing good piezocatalysts. Herein, a reduced graphene oxide (rGO)-MoS heterostructure is rationally designed to tackle these challenges. The heterostructure shows a record-high piezocatalytic degradation rate of 1.40 × 10 L mol s , which is 7.86 times higher than MoS nanosheets. Piezoresponse force microscope measurements and density functional theory calculation reveal that the coupling between semiconductive and piezoelectric properties in the vdW heterojunction is vital to break the metallic state screening effect at the MoS edge for keeping the piezoelectric potential. The dynamic charges generated by MoS and the fast charge transfer in rGO activate and maintain catalytically active sites for pollutant degradation with an ultra-fast rate and good stability. The working mechanism opens new avenues for developing efficient catalysts significant to wastewater treatments and other applications.

摘要

研究了二维(2D)材料中的催化活性,其独特的结构和电子特性有助于它们在传统的多相催化中取得成功。基于异质结的压电催化由于能带结构工程和显著的压电效应增强了电荷载流子分离而受到越来越多的关注。然而,范德华(vdW)异质结构的压电催化行为尚不清楚,有限的活性位点、催化剂中毒和较差的导电性是开发良好压电催化剂的挑战。在此,合理设计了还原氧化石墨烯(rGO)-MoS 异质结构来解决这些挑战。该异质结构表现出创纪录的高的压电催化降解速率为 1.40×10 L mol s ,比 MoS 纳米片高 7.86 倍。压电力显微镜测量和密度泛函理论计算表明,vdW 异质结中半导体和压电性能的耦合对于打破 MoS 边缘的金属态屏蔽效应以保持压电势至关重要。由 MoS 产生的动态电荷和 rGO 中的快速电荷转移以超快的速率和良好的稳定性激活并维持用于污染物降解的催化活性位点。该工作机制为开发对废水处理和其他应用具有重要意义的高效催化剂开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验