Suppr超能文献

使用MXene-MnFeO纳米复合材料与富勒烯衍生物集成用于钙钛矿基太阳能电池和探测器以增强电子传输特性

Enhancement of Electron Transport Characteristics Using MXene-MnFeO Nanocomposite Integration with Fullerene Derivatives for the Perovskite-Based Solar Cells and Detectors.

作者信息

Liu Hailiang, Hussain Sajjad, Ali Sheikh Zulfqar, Aftab Sikandar, Al-Enizi Abdullah M, Adaikalam Kathalingam, Kim Hyun-Seok, Jung Jongwan, Kim Deok-Kee, Vikraman Dhanasekaran, Kang Jungwon

机构信息

Convergence Semiconductor Research Center, Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea.

Hybrid Materials Center (HMC) and Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52739-52752. doi: 10.1021/acsami.4c08986. Epub 2024 Sep 17.

Abstract

In this study, we prepared a hybrid film incorporating the MnFeO-decorated conducting two-dimensional (2D) MXene sheet-suspended [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transfer layer (ETL) for the perovskite solar cells (PSCs) and detectors. The incorporation of MXene-MnFeO with the PCBM ETL could drive exceptional conducting features for the PSCs. Moreover, the presence of MXene-MnFeO facilitated superior charge transfer pathways, thereby enhancing the electron extraction and collection processes. This enhancement was directed to improve the electron mobility within the device, resulting in high photocurrents. The designed interface engineering with the MXene-MnFeO nanocomposite-tuned PCBM ETL has produced a remarkable power conversion efficiency of 17.79% ± 0.27. Moreover, X-ray detectors employing PCBM modulated with the MXene-MnFeO ETL achieved notable performance metrics including 18.47 μA/cm CCD-DCD, 5.53 mA/Gy·cm sensitivity, 7.64 × 10 cm/V·s electron mobility, and 1.51 × 10 cm/V·s trap density.

摘要

在本研究中,我们制备了一种混合薄膜,该薄膜包含用于钙钛矿太阳能电池(PSC)和探测器的锰铁氧化物修饰的导电二维(2D)MXene片悬浮[6,6]-苯基-C61-丁酸甲酯(PCBM)电子传输层(ETL)。MXene-MnFeO与PCBM ETL的结合可为PSC带来卓越的导电特性。此外,MXene-MnFeO的存在促进了优异的电荷转移途径,从而增强了电子提取和收集过程。这种增强旨在提高器件内的电子迁移率,从而产生高光电流。采用MXene-MnFeO纳米复合材料调谐的PCBM ETL进行的界面工程设计产生了17.79%±0.27的显著功率转换效率。此外,采用MXene-MnFeO ETL调制的PCBM的X射线探测器实现了显著的性能指标,包括18.47 μA/cm的电荷耦合器件暗电流-暗电流(CCD-DCD)、5.53 mA/Gy·cm的灵敏度、7.64×10 cm/V·s的电子迁移率和1.51×10 cm/V·s的陷阱密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验