Suppr超能文献

一种通过改进不同气候变化情景下集合未来气候模型模拟来预测干旱的新统计框架。

A novel statistical framework of drought projection by improving ensemble future climate model simulations under various climate change scenarios.

机构信息

College of Statistical Sciences, University of the Punjab, Lahore, Pakistan.

出版信息

Environ Monit Assess. 2024 Sep 17;196(10):938. doi: 10.1007/s10661-024-13108-w.

Abstract

Unlike other natural disasters, drought is one of the most severe threats to all living beings globally. Due to global climate change, the frequency and duration of droughts have increased in many parts of the world. Therefore, accurate prediction and forecasting of droughts are essential for effective mitigation policies and sustainable research. In recent research, the use of ensemble global climate models (GCMs) for simulating precipitation data is common. The objective of this research is to enhance the multi-model ensemble (MME) for improving future drought characterizations. In this research, we propose the use of relative importance metric (RIM) to address collinearity effects and point-wise discrepancy weights (PWDW) in GCMs. Consequently, this paper introduces a new statistical framework for weighted ensembles called the discrepancy-enhanced beta weighting ensemble (DEBWE). DEBWE enhances the weighted ensemble data of precipitation simulated by multiple GCMs. In DEBWE, we addressed uncertainties in GCMs arising from collinearity and outliers. To evaluate the effectiveness of the proposed weighting framework, we compared its performance with the simple average multi-model ensemble (SAMME), Taylor skill score ensemble (TSSE), and mutual information ensemble (MIE). Based on the Kling-Gupta efficiency (KGE) metric, DEBWE outperforms all competitors across all evaluation criteria. These inferences are based on the analysis of historical simulated data from 22 GCMs in the CMIP6 project. The quantitative performance indicators strongly support the superiority of DEBWE. The median and mean KGE values for DEBWE are 0.2650 and 0.2429, compared to SAMME (0.1000, 0.0991), TSSE (0.2600, 0.2397), and MIE (0.1550, 0.1511). For drought assessment, we computed the adaptive standardized precipitation index (SPI) for three future scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5. The steady-state probabilities suggest that normal drought (ND) is the most frequent condition, with extreme events (dry or wet) being less probable.

摘要

与其他自然灾害不同,干旱是全球范围内对所有生物最严重的威胁之一。由于全球气候变化,世界许多地区的干旱频率和持续时间都有所增加。因此,准确预测和预报干旱对于制定有效的缓解政策和可持续研究至关重要。在最近的研究中,使用集合全球气候模型(GCM)来模拟降水数据是很常见的。本研究的目的是通过增强多模式集合(MME)来提高未来干旱特征的描述能力。在本研究中,我们提出使用相对重要性度量(RIM)来解决 GCM 中的共线性效应和点差异权重(PWDW)。因此,本文提出了一种新的统计框架,称为差异增强的贝塔加权集合(DEBWE),用于加权集合。DEBWE 增强了多个 GCM 模拟的降水的加权集合数据。在 DEBWE 中,我们解决了 GCM 中由于共线性和异常值引起的不确定性。为了评估所提出的加权框架的有效性,我们将其性能与简单平均多模式集合(SAMME)、泰勒技能得分集合(TSSE)和互信息集合(MIE)进行了比较。基于 Kling-Gupta 效率(KGE)度量,DEBWE 在所有评估标准上都优于所有竞争对手。这些推断是基于对来自 CMIP6 项目的 22 个 GCM 的历史模拟数据的分析得出的。定量性能指标强烈支持 DEBWE 的优越性。DEBWE 的中位数和平均值 KGE 值分别为 0.2650 和 0.2429,而 SAMME 为 0.1000、0.0991,TSSE 为 0.2600、0.2397,MIE 为 0.1550、0.1511。对于干旱评估,我们计算了三个未来情景(SSP1-2.6、SSP2-4.5 和 SSP5-8.5)下的自适应标准化降水指数(SPI)。稳态概率表明,正常干旱(ND)是最常见的情况,极端事件(干燥或湿润)的可能性较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验