Suppr超能文献

预测崇明二氧化碳排放量:一种结合灰色关联分析和深度学习方法的新型混合预测模型。

Forecasting carbon dioxide emissions in Chongming: a novel hybrid forecasting model coupling gray correlation analysis and deep learning method.

机构信息

College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China.

Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China.

出版信息

Environ Monit Assess. 2024 Sep 17;196(10):941. doi: 10.1007/s10661-024-13092-1.

Abstract

Predicting regional carbon dioxide (CO2) emissions is essential for advancing toward global carbon neutrality. This study introduces a novel CO2 emissions prediction model tailored to the unique environmental, economic, and energy consumption of Shanghai Chongming. Utilizing an innovative hybrid approach, the study first applies grey relational analysis to evaluate the influence of economic activity, natural conditions, and energy consumption on CO2 emissions. This is followed by the implementation of a dual-channel pooled convolutional neural network (DCNN) that captures both local and global features of the data, enhanced through feature stacking. Gated recurrent unit (GRU) network then assesses the temporal aspects of these features, culminating in precise CO2 emission predictions for the region. The results indicate: (1) The proposed hybrid model achieves accurate predictions based on accounting data, with high precision, low error, and good stability. (2) The study found an overall increase in Chongming's carbon emissions from 2000 to 2022, with the prediction results being generally consistent with existing research findings. (3) The proposed method, based on Chongming's CO2 emission predictions, addresses issues such as the scarcity of effective accounting data and inaccuracies in traditional calculation methods. The results can provide effective technical support for local government policies on carbon reduction and promote sustainable development.

摘要

预测区域二氧化碳(CO2)排放对于实现全球碳中和至关重要。本研究引入了一种新颖的 CO2 排放预测模型,专门针对上海崇明独特的环境、经济和能源消耗情况进行定制。该研究采用创新的混合方法,首先应用灰色关联分析评估经济活动、自然条件和能源消耗对 CO2 排放的影响。接着,实施双通道卷积神经网络(DCNN),捕捉数据的局部和全局特征,并通过特征堆叠进行增强。门控循环单元(GRU)网络随后评估这些特征的时间方面,最终对该地区进行精确的 CO2 排放预测。结果表明:(1)基于核算数据,所提出的混合模型实现了准确的预测,具有高精度、低误差和良好的稳定性。(2)研究发现,2000 年至 2022 年,崇明的碳排放总体呈上升趋势,预测结果与现有研究结果基本一致。(3)该方法基于崇明的 CO2 排放预测,可以解决有效核算数据短缺和传统计算方法不准确等问题。研究结果可为地方政府的减排政策提供有效的技术支持,促进可持续发展。

相似文献

2
Predicting carbon dioxide emissions in the United States of America using machine learning algorithms.
Environ Sci Pollut Res Int. 2024 May;31(23):33685-33707. doi: 10.1007/s11356-024-33460-1. Epub 2024 Apr 30.
3
A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China.
Environ Sci Pollut Res Int. 2023 Nov;30(55):117485-117502. doi: 10.1007/s11356-023-30428-5. Epub 2023 Oct 23.
4
Environmental impact of national and subnational carbon policies in China based on a multi-regional dynamic CGE model.
J Environ Manage. 2020 Sep 15;270:110901. doi: 10.1016/j.jenvman.2020.110901. Epub 2020 Jun 14.
6
Carbon emissions in China's steel industry from a life cycle perspective: Carbon footprint insights.
J Environ Sci (China). 2025 Feb;148:650-664. doi: 10.1016/j.jes.2023.04.027. Epub 2023 May 6.
8
Energy consumption and CO emissions in Iran, 2025.
Environ Res. 2017 Apr;154:345-351. doi: 10.1016/j.envres.2017.01.023. Epub 2017 Feb 3.
9
Grey optimization Verhulst model and its application in forecasting coal-related CO emissions.
Environ Sci Pollut Res Int. 2020 Dec;27(35):43884-43905. doi: 10.1007/s11356-020-09572-9. Epub 2020 Aug 1.
10
A novel Grey Verhulst model and its application in forecasting CO2 emissions.
Environ Sci Pollut Res Int. 2021 Jun;28(24):31370-31379. doi: 10.1007/s11356-020-12137-5. Epub 2021 Feb 19.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验