Chukwunonso Bosah Philip, Al-Wesabi Ibrahim, Shixiang Li, AlSharabi Khalil, Al-Shamma'a Abdullrahman A, Farh Hassan M Hussein, Saeed Fahman, Kandil Tarek, Al-Shaalan Abdullah M
School of Public Administration, China University of Geosciences, Lumo Road 388, Wuhan, 430074, People's Republic of China.
School of Automation, China University of Geoscience, Wuhan, 430074, China.
Environ Sci Pollut Res Int. 2024 May;31(23):33685-33707. doi: 10.1007/s11356-024-33460-1. Epub 2024 Apr 30.
Carbon dioxide (CO) emissions result from human activities like burning fossil fuels. CO is a greenhouse gas, contributing to global warming and climate change. Efforts to reduce CO emissions include transitioning to renewable energy. Monitoring and reducing CO emissions are crucial for mitigating climate change. Strategies include energy efficiency and renewable energy adoption. In the past few decades, several nations have experienced air pollution and environmental difficulties because of carbon dioxide (CO) emissions. One of the most crucial methods for regulating and maximizing CO emission reductions is precise forecasting. Four machine learning algorithms with high forecasting precision and low data requirements were developed in this study to estimate CO emissions in the United States (US). Data from a dataset covering the years 1973/01 to 2022/07 that included information on different energy sources that had an impact on CO emissions were examined. Then, four algorithms performed the CO emissions forecast from the layer recurrent neural network with 10 nodes (L-RNN), a feed-forward neural network with 10 nodes (FFNN), a convolutional neural network with two layers with 10 and 5 filters (CNN1), and convolutional neural network with two layers and with 50 and 25 filters (CNN2) models. Each algorithm's forecast accuracy was assessed using eight indicators. The three preprocessing techniques used are (1) without any processing techniques, (2) processed using max-min normalization technique, and (3) processed using max-min normalization technique and decomposed by variation mode decomposition (VMD) technique with 7 intrinsic mode functions and 1000 iterations. The latter with L-RNN algorithm gave a high accuracy between the forecasting and actual values. The results of CO emissions from 2011/05 to 2022/07 have been forecasted, and the L-RNN algorithm had the highest forecast accuracy. The L-RNN model has the lowest value of 1.187028078, 135.5668592, and 11.64331822 for MAPE, MSE, and RMSE, respectively. The L-RNN model provides precise and timely forecasts that can help formulate plans to reduce carbon emissions and contribute to a more sustainable future. Moreover, the results of this investigation can improve our comprehension of the dynamics of carbon dioxide emissions, resulting in better-informed environmental policies and initiatives targeted at lowering carbon emissions.
二氧化碳(CO)排放源于燃烧化石燃料等人类活动。CO是一种温室气体,会导致全球变暖和气候变化。减少CO排放的努力包括向可再生能源转型。监测和减少CO排放对于缓解气候变化至关重要。策略包括提高能源效率和采用可再生能源。在过去几十年里,几个国家因二氧化碳(CO)排放而经历了空气污染和环境问题。精确预测是调控和最大限度减少CO排放的关键方法之一。本研究开发了四种预测精度高且数据需求低的机器学习算法,用于估算美国的CO排放量。研究了一个涵盖1973年1月至2022年7月的数据集的数据,该数据集包含了对CO排放有影响的不同能源的信息。然后,四种算法通过具有10个节点的层递归神经网络(L-RNN)、具有10个节点的前馈神经网络(FFNN)、具有10个和5个滤波器的两层卷积神经网络(CNN1)以及具有50个和25个滤波器的两层卷积神经网络(CNN2)模型进行CO排放预测。使用八个指标评估每种算法的预测准确性。使用的三种预处理技术分别是:(1)不使用任何处理技术;(2)使用最大-最小归一化技术进行处理;(3)使用最大-最小归一化技术进行处理,并通过具有7个固有模式函数和1000次迭代的变分模态分解(VMD)技术进行分解。后者与L-RNN算法相结合,在预测值和实际值之间给出了较高的准确性。已经预测了2011年5月至2022年7月的CO排放结果,L-RNN算法的预测准确性最高。L-RNN模型的平均绝对百分比误差(MAPE)、均方误差(MSE)和均方根误差(RMSE)分别为最低值1.187028078、135.5668592和11.64331822。L-RNN模型提供了精确及时的预测,有助于制定减少碳排放的计划,并为更可持续的未来做出贡献。此外,这项调查的结果可以增进我们对二氧化碳排放动态的理解,从而制定出更明智的旨在降低碳排放的环境政策和举措。