Department of Chemical Sciences, Tata Institue of Fundamental Research, Colaba, Mumbai 400005, India.
J Chem Theory Comput. 2024 Oct 8;20(19):8422-8436. doi: 10.1021/acs.jctc.4c00744. Epub 2024 Sep 17.
The complex, multidimensional energy landscape of biomolecules makes the extraction of suitable, nonintuitive collective variables (CVs) that describe their conformational transitions challenging. At present, dimensionality reduction approaches and machine learning (ML) schemes are employed to obtain CVs from molecular dynamics (MD)/Monte Carlo (MC) trajectories or structural databanks for biomolecules. However, minimum sampling conditions to generate reliable CVs that accurately describe the underlying energy landscape remain unclear. Here, we address this issue by developing a ode volution Metric (MeM) to extract CVs that can pinpoint new states and describe local transitions in the vicinity of a reference minimum from nonequilibrated MD/MC trajectories. We present a general mathematical formulation of MeM for both statistical dimensionality reduction and machine learning approaches. Application of MeM to MC trajectories of model potential energy landscapes and MD trajectories of solvated alanine dipeptide reveals that the principal components which locate new states in the vicinity of a reference minimum emerge well before the trajectories locally equilibrate between the associated states. Finally, we demonstrate a possible application of MeM in designing efficient biased sampling schemes to construct accurate energy landscape slices that link transitions between states. MeM can help speed up the search for new minima around a biomolecular conformational state and enable the accurate estimation of thermodynamics for states lying on the energy landscape and the description of associated transitions.
生物分子的复杂、多维能量景观使得提取合适的、非直观的描述其构象转变的集体变量 (CVs) 具有挑战性。目前,采用降维方法和机器学习 (ML) 方案从分子动力学 (MD)/蒙特卡罗 (MC) 轨迹或生物分子的结构数据库中获取 CVs。然而,生成能够准确描述潜在能量景观的可靠 CVs 的最小采样条件仍不清楚。在这里,我们通过开发 ode volution Metric (MeM) 来解决这个问题,该方法可以从非平衡 MD/MC 轨迹中提取能够精确定位新状态并描述参考最小值附近局部转变的 CVs。我们为统计降维和机器学习方法提出了 MeM 的一般数学公式。MeM 在模型势能景观的 MC 轨迹和溶剂化丙氨酸二肽的 MD 轨迹上的应用表明,在轨迹在相关状态之间局部平衡之前,定位参考最小值附近新状态的主成分就已经很好地出现了。最后,我们展示了 MeM 在设计有效有偏采样方案以构建连接状态之间转变的准确能量景观切片方面的可能应用。MeM 可以帮助加快在生物分子构象状态周围寻找新的最小值,并能够准确估计位于能量景观上的状态的热力学和描述相关的转变。