Wan Xiaohua, Hu Yulong, Qiu Dehui, Zhang Juan, Wang Xiaotong, Zhang Fa, Hu Bin
IEEE Trans Nanobioscience. 2025 Jul;24(3):269-279. doi: 10.1109/TNB.2024.3462461.
The features of the sublingual veins, including swelling, varicose patterns, and cyanosis, are pivotal in differentiating symptoms and selecting treatments in Traditional Chinese Medicine (TCM) tongue diagnosis. These features serve as a crucial reflection of the human blood circulation status. Nevertheless, the automatic and precise extraction of sublingual vein features remains a formidable challenge, constrained by the scarcity of datasets for sublingual images and the interference of noise from non-tongue and non-sublingual vein elements. In this paper, we present an innovative tongue feature extraction method that relies on focusing specifically on segmenting the sublingual vein rather than the entire tongue base. To achieve this, we have developed a sublingual vein segmentation framework utilizing a Polyp-PVT network, effectively eliminating noise from the surrounding regions of the sublingual vein. Furthermore, we pioneer the utilization of a transformer-based approach, such as the Swin-Transformer network, to extract sublingual vein features, leveraging the remarkable capabilities of transformer networks. To complement our methodology, we have constructed a comprehensive dataset of sublingual vein images, facilitating the segmentation and classification of sublingual veins. Experimental results have demonstrated that our tongue feature extraction method, coupled with sublingual vein segmentation, significantly outperforms existing tongue feature extraction techniques.
舌下静脉的特征,包括肿胀、曲张形态和青紫,在中医舌诊中对于辨别症状和选择治疗方法起着关键作用。这些特征是人体血液循环状态的重要反映。然而,舌下静脉特征的自动精确提取仍然是一项艰巨的挑战,受到舌下图像数据集稀缺以及非舌头和非舌下静脉元素噪声干扰的限制。在本文中,我们提出了一种创新的舌部特征提取方法,该方法特别专注于分割舌下静脉而非整个舌根。为实现这一目标,我们开发了一个利用Polyp-PVT网络的舌下静脉分割框架,有效消除舌下静脉周围区域的噪声。此外,我们率先采用基于Transformer的方法,如Swin-Transformer网络,来提取舌下静脉特征,利用Transformer网络的卓越能力。为完善我们的方法,我们构建了一个全面的舌下静脉图像数据集,便于舌下静脉的分割和分类。实验结果表明,我们的舌部特征提取方法结合舌下静脉分割,显著优于现有的舌部特征提取技术。