Guo Juncheng, Galliero Guillaume, Vermorel Romain
Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LFCR, Pau 64013, France.
Nano Lett. 2024 Oct 2;24(39):12292-12298. doi: 10.1021/acs.nanolett.4c03580. Epub 2024 Sep 17.
In recent years, extensive research has used molecular dynamics simulations to investigate gas separation through nanoporous graphene (NPG) membranes. However, most studies have considered graphene membranes as rigid, overlooking the impact of their inherent flexibility. This study systematically quantifies the effect of graphene flexibility on gas permeation by comparing the diffusion of various gases through flexible and rigid single-layer NPG models. The results demonstrate that flexibility notably increases permeance, particularly for gases with larger molecular diameters/pore size ratios, by allowing gas molecules greater mobility within the pore. Interestingly, the effect of flexibility boils down to the expansion of the average pore size, and the detail of the membrane's vibrational dynamics is of little importance in quantifying permeance. Our work shows that accounting for flexibility in molecular models improves the alignment of simulation results with experimental data, emphasizing the importance of considering membrane flexibility in predictive models of NPG membrane performance.
近年来,大量研究利用分子动力学模拟来研究通过纳米多孔石墨烯(NPG)膜进行气体分离。然而,大多数研究将石墨烯膜视为刚性的,忽略了其固有柔韧性的影响。本研究通过比较各种气体在柔性和刚性单层NPG模型中的扩散,系统地量化了石墨烯柔韧性对气体渗透的影响。结果表明,柔韧性显著提高了渗透率,特别是对于分子直径/孔径比更大的气体,因为它使气体分子在孔内具有更大的迁移率。有趣的是,柔韧性的影响归根结底是平均孔径的扩大,而膜振动动力学的细节在量化渗透率方面不太重要。我们的工作表明,在分子模型中考虑柔韧性可提高模拟结果与实验数据的一致性,强调了在NPG膜性能预测模型中考虑膜柔韧性的重要性。