Suppr超能文献

厘米尺度单层纳米多孔石墨烯膜的分子筛作用。

Molecular Sieving Across Centimeter-Scale Single-Layer Nanoporous Graphene Membranes.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Nano. 2017 Jun 27;11(6):5726-5736. doi: 10.1021/acsnano.7b01231. Epub 2017 Jun 13.

Abstract

Molecular sieving across atomically thin nanoporous graphene is predicted to enable superior gas separation performance compared to conventional membranes. Although molecular sieving has been demonstrated across a few pores in microscale graphene membranes, leakage through nonselective defects presents a major challenge toward realizing selective membranes with high densities of pores over macroscopic areas. Guided by multiscale gas transport modeling of nanoporous graphene membranes, we designed the porous support beneath the graphene to isolate small defects and minimize leakage through larger defects. Ion bombardment followed by oxygen plasma etching was used to produce subnanometer pores in graphene at a density of ∼10 cm. Gas permeance measurements demonstrate selectivity that exceeds the Knudsen effusion ratio and scales with the kinetic diameter of the gas molecules, providing evidence of molecular sieving across centimeter-scale nanoporous graphene. The extracted nanoporous graphene performance is comparable to or exceeds the Robeson limit for polymeric gas separation membranes, confirming the potential of nanoporous graphene membranes for gas separations.

摘要

分子筛分跨越原子薄的纳米多孔石墨烯有望实现比传统膜更优异的气体分离性能。尽管已经在微尺度石墨烯膜的几个孔中证明了分子筛分,但通过非选择性缺陷的泄漏是实现具有宏观面积上高孔密度的选择性膜的主要挑战。在纳米多孔石墨烯膜的多尺度气体输运模型的指导下,我们设计了石墨烯下方的多孔支撑体,以隔离小孔和最小化通过大孔的泄漏。离子轰击后进行氧等离子体刻蚀,在石墨烯中产生了约 10cm-1 的亚纳米孔。气体渗透率测量证明了选择性超过了克努森逸出比,并与气体分子的动力学直径成比例,为厘米级纳米多孔石墨烯的分子筛分提供了证据。提取的纳米多孔石墨烯性能可与或超过聚合物气体分离膜的罗比森极限,证实了纳米多孔石墨烯膜在气体分离中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验