Suppr超能文献

使用可解释机器学习对重症监护病房中的心脏骤停进行早期预测:回顾性研究。

Early Prediction of Cardiac Arrest in the Intensive Care Unit Using Explainable Machine Learning: Retrospective Study.

机构信息

Technology Development, Seers Technology Co. Ltd., Pyeongtaek-si, Gyeonggi-do, Republic of Korea.

Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2024 Sep 17;26:e62890. doi: 10.2196/62890.

Abstract

BACKGROUND

Cardiac arrest (CA) is one of the leading causes of death among patients in the intensive care unit (ICU). Although many CA prediction models with high sensitivity have been developed to anticipate CA, their practical application has been challenging due to a lack of generalization and validation. Additionally, the heterogeneity among patients in different ICU subtypes has not been adequately addressed.

OBJECTIVE

This study aims to propose a clinically interpretable ensemble approach for the timely and accurate prediction of CA within 24 hours, regardless of patient heterogeneity, including variations across different populations and ICU subtypes. Additionally, we conducted patient-independent evaluations to emphasize the model's generalization performance and analyzed interpretable results that can be readily adopted by clinicians in real-time.

METHODS

Patients were retrospectively analyzed using data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and the eICU-Collaborative Research Database (eICU-CRD). To address the problem of underperformance, we constructed our framework using feature sets based on vital signs, multiresolution statistical analysis, and the Gini index, with a 12-hour window to capture the unique characteristics of CA. We extracted 3 types of features from each database to compare the performance of CA prediction between high-risk patient groups from MIMIC-IV and patients without CA from eICU-CRD. After feature extraction, we developed a tabular network (TabNet) model using feature screening with cost-sensitive learning. To assess real-time CA prediction performance, we used 10-fold leave-one-patient-out cross-validation and a cross-data set method. We evaluated MIMIC-IV and eICU-CRD across different cohort populations and subtypes of ICU within each database. Finally, external validation using the eICU-CRD and MIMIC-IV databases was conducted to assess the model's generalization ability. The decision mask of the proposed method was used to capture the interpretability of the model.

RESULTS

The proposed method outperformed conventional approaches across different cohort populations in both MIMIC-IV and eICU-CRD. Additionally, it achieved higher accuracy than baseline models for various ICU subtypes within both databases. The interpretable prediction results can enhance clinicians' understanding of CA prediction by serving as a statistical comparison between non-CA and CA groups. Next, we tested the eICU-CRD and MIMIC-IV data sets using models trained on MIMIC-IV and eICU-CRD, respectively, to evaluate generalization ability. The results demonstrated superior performance compared with baseline models.

CONCLUSIONS

Our novel framework for learning unique features provides stable predictive power across different ICU environments. Most of the interpretable global information reveals statistical differences between CA and non-CA groups, demonstrating its utility as an indicator for clinical decisions. Consequently, the proposed CA prediction system is a clinically validated algorithm that enables clinicians to intervene early based on CA prediction information and can be applied to clinical trials in digital health.

摘要

背景

心脏骤停 (CA) 是重症监护病房 (ICU) 患者死亡的主要原因之一。尽管已经开发出许多具有高灵敏度的 CA 预测模型来预测 CA,但由于缺乏泛化和验证,其实际应用具有挑战性。此外,不同 ICU 亚型患者之间的异质性尚未得到充分解决。

目的

本研究旨在提出一种临床可解释的集成方法,以便及时准确地预测 24 小时内的 CA,而不受患者异质性的影响,包括不同人群和 ICU 亚型之间的变化。此外,我们进行了患者独立评估,以强调模型的泛化性能,并分析了可由临床医生实时采用的可解释结果。

方法

使用来自 Medical Information Mart for Intensive Care-IV (MIMIC-IV) 和 eICU-Collaborative Research Database (eICU-CRD) 的数据对患者进行回顾性分析。为了解决表现不佳的问题,我们使用基于生命体征、多分辨率统计分析和基尼指数的特征集构建了我们的框架,使用 12 小时窗口来捕获 CA 的独特特征。我们从每个数据库中提取 3 种类型的特征,以比较来自 MIMIC-IV 的高危患者组和来自 eICU-CRD 的无 CA 患者的 CA 预测性能。在特征提取之后,我们使用基于成本敏感学习的特征筛选开发了一个表格网络 (TabNet) 模型。为了评估实时 CA 预测性能,我们使用了 10 折留一患者交叉验证和跨数据集方法。我们在每个数据库中评估了 MIMIC-IV 和 eICU-CRD 中不同的队列人群和 ICU 亚型。最后,使用 eICU-CRD 和 MIMIC-IV 数据库进行外部验证,以评估模型的泛化能力。所提出方法的决策掩模用于捕获模型的可解释性。

结果

在所研究的不同队列人群中,所提出的方法在 MIMIC-IV 和 eICU-CRD 中均优于传统方法。此外,它在两个数据库中的各种 ICU 亚型中均实现了比基线模型更高的准确性。可解释的预测结果可以通过对非 CA 和 CA 组之间的统计比较来增强临床医生对 CA 预测的理解。接下来,我们使用在 MIMIC-IV 和 eICU-CRD 上训练的模型在 eICU-CRD 和 MIMIC-IV 数据集中进行了测试,以评估泛化能力。结果表明,与基线模型相比,表现有所提高。

结论

我们用于学习独特特征的新框架为不同的 ICU 环境提供了稳定的预测能力。大部分可解释的全局信息揭示了 CA 和非 CA 组之间的统计学差异,证明了其作为临床决策指标的实用性。因此,所提出的 CA 预测系统是一种经过临床验证的算法,可使临床医生能够根据 CA 预测信息进行早期干预,并可应用于数字健康的临床试验中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b94/11445627/9ca8fb56b019/jmir_v26i1e62890_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验