Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
Nature. 2020 Oct;586(7829):E14-E16. doi: 10.1038/s41586-020-2766-y. Epub 2020 Oct 14.
Breakthroughs in artificial intelligence (AI) hold enormous potential as it can automate complex tasks and go even beyond human performance. In their study, McKinney et al. showed the high potential of AI for breast cancer screening. However, the lack of methods’ details and algorithm code undermines its scientific value. Here, we identify obstacles hindering transparent and reproducible AI research as faced by McKinney et al., and provide solutions to these obstacles with implications for the broader field.
人工智能(AI)的突破具有巨大的潜力,因为它可以自动化复杂的任务,甚至超越人类的表现。在他们的研究中,McKinney 等人展示了 AI 在乳腺癌筛查方面的巨大潜力。然而,缺乏方法细节和算法代码降低了其科学价值。在这里,我们确定了 McKinney 等人在进行透明和可重复的 AI 研究时所面临的障碍,并提供了解决这些障碍的方法,这些方法对更广泛的领域也具有意义。