Suppr超能文献

一种基于生成对抗网络(GAN)的创新变体:回归 GAN 与高光谱成像相结合,预测哈密瓜中农药残留含量。

An innovative variant based on generative adversarial network (GAN): Regression GAN combined with hyperspectral imaging to predict pesticide residue content of Hami melon.

机构信息

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China.

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China; Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 15;325:125086. doi: 10.1016/j.saa.2024.125086. Epub 2024 Sep 2.

Abstract

The rapid and non-destructive detection of pesticide residues in Hami melons plays substantial importance in protecting consumer health. However, the investment of time and resources needed to procure sample data poses a challenge, often resulting in limited data set and consequently leading insufficient accuracy of the established models. In this study, an innovative variant based on generative adversarial network (GAN) was proposed, named regression GAN (RGAN). It was used to synchronically extend the visible near-infrared (VNIR) and short-wave infrared (SWIR) hyperspectral data and corresponding acetamiprid residue content data of Hami melon. The support vector regression (SVR) and partial least squares regression (PLSR) models were trained using the generated data, and subsequently validate them with real data to assess the reliability of the generated data. In addition, the generated data were added to the real data to extend the dataset. The SVR model based on SWIR-HSI data achieved the optimal performance after data augmentation, yielding the values of R, RMSEP and RPD were 0.8781, 0.6962 and 2.7882, respectively. The RGAN extends the range of GAN applications from classification problems to regression problems. It serves as a valuable reference for the quantitative analysis of chemometrics.

摘要

哈密瓜中农药残留的快速无损检测对保护消费者健康具有重要意义。然而,获取样本数据所需的时间和资源的投入带来了挑战,通常导致数据集有限,从而导致建立的模型准确性不足。在本研究中,提出了一种基于生成对抗网络(GAN)的创新变体,称为回归 GAN(RGAN)。它被用于同步扩展哈密瓜可见近红外(VNIR)和短波近红外(SWIR)高光谱数据以及相应的啶虫脒残留含量数据。使用生成的数据训练支持向量回归(SVR)和偏最小二乘回归(PLSR)模型,并使用真实数据对其进行验证,以评估生成数据的可靠性。此外,将生成的数据添加到真实数据中以扩展数据集。基于 SWIR-HSI 数据的 SVR 模型在数据扩充后达到了最佳性能,其 R、RMSEP 和 RPD 的值分别为 0.8781、0.6962 和 2.7882。RGAN 将 GAN 的应用范围从分类问题扩展到回归问题。它为化学计量学的定量分析提供了有价值的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验