Orsi Enrico, Hernández-Sancho Javier M, Remeijer Maaike S, Kruis Aleksander J, Volke Daniel C, Claassens Nico J, Paul Caroline E, Bruggeman Frank J, Weusthuis Ruud A, Nikel Pablo I
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
Curr Opin Biotechnol. 2024 Dec;90:103195. doi: 10.1016/j.copbio.2024.103195. Epub 2024 Sep 16.
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCOH), methanol (CHOH), and methane (CH), can be obtained either through stepwise electrochemical reduction of CO with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
一碳(C1)原料,如一氧化碳(CO)、甲酸盐(HCOH)、甲醇(CHOH)和甲烷(CH),既可以通过利用可再生电力对CO进行逐步电化学还原获得,也可以通过处理有机侧流得到。这些C1底物在生物技术领域正受到越来越多的研究,因为它们有助于实现循环碳经济。近年来,非经典氧化还原辅因子(NCRCs)作为一种工具出现,可用于在细胞工厂中构建合成电子电路,以最大限度地提高目标途径内的电子传递。在此,我们认为,在C1驱动的生物过程中扩大NCRCs的应用将提高产品产量,并促进具有挑战性的氧化还原反应,由于固有的热力学限制,这些反应通常超出了天然辅因子的范围。