Suppr超能文献

用于预测胎盘植入谱系疾病手术并发症的机器学习

Machine Learning for the Prediction of Surgical Morbidity in Placenta Accreta Spectrum.

作者信息

Futterman Itamar D, Sher Olivia, Saroff Chaskin, Cohen Alexa, Doulaveris Georgios, Dar Pe'er, Griffin Myah M, Limaye Meghana, Owens Thomas, Brustman Lois, Rosenberg Henri, Jessel Rebecca, Chudnoff Scott, Haberman Shoshana

机构信息

Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York.

Division of Complex Obstetrical Surgery, Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York.

出版信息

Am J Perinatol. 2025 Feb;42(3):281-292. doi: 10.1055/a-2405-3459. Epub 2024 Sep 17.

Abstract

OBJECTIVE

We sought to create a machine learning (ML) model to identify variables that would aid in the prediction of surgical morbidity in cases of placenta accreta spectrum (PAS).

STUDY DESIGN

A multicenter analysis including all cases of PAS identified by pathology specimen confirmation, across five tertiary care perinatal centers in New York City from 2013 to 2022. We developed models to predict operative morbidity using 213 variables including demographics, obstetrical information, and limited prenatal imaging findings detailing placental location. Our primary outcome was prediction of a surgical morbidity composite defined as including any of the following: blood loss (>1,500 mL), transfusion, intensive care unit admission, vasopressor use, mechanical ventilation/intubation, and organ injury. A nested, stratified, cross-validation approach was used to tune model hyperparameters and estimate generalizability. Gradient boosted tree classifier models incorporated preprocessing steps of standard scaling for numerical variables and one-hot encoding for categorical variables. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), positive and negative predictive values (PPV, NPV), and F1 score. Variable importance ranking was also determined.

RESULTS

Among 401 PAS cases, 326 (81%) underwent hysterectomy. Of the 401 cases of PAS, 309 (77%) had at least one event defined as surgical morbidity. Our predictive model had an AUC of 0.79 (95% confidence interval: 0.69, 0.89), PPV 0.79, NPV 0.76, and F1 score of 0.88. The variables most predictive of surgical morbidity were completion of a hysterectomy, prepregnancy body mass index (BMI), absence of a second trimester ultrasound, socioeconomic status zip code, BMI at delivery, number of prenatal visits, and delivery time of day.

CONCLUSION

By identifying social and obstetrical characteristics that increase patients' risk, ML models are useful in predicting PAS-related surgical morbidity. Utilizing ML could serve as a foundation for risk and complexity stratification in cases of PAS to optimize surgical planning.

KEY POINTS

· ML models are useful models are useful in predicting PAS-related surgical morbidity.. · Optimal management for PAS remains unclear.. · Utilizing ML can serve as a foundation for risk and complexity stratification in cases of PAS..

摘要

目的

我们试图创建一个机器学习(ML)模型,以识别有助于预测胎盘植入谱系疾病(PAS)手术并发症的变量。

研究设计

一项多中心分析,纳入了2013年至2022年纽约市五个三级围产期护理中心经病理标本确认的所有PAS病例。我们开发了模型,使用213个变量预测手术并发症,这些变量包括人口统计学、产科信息以及详细的胎盘位置产前影像学检查结果。我们的主要结局是预测手术并发症综合指标,定义为包括以下任何一项:失血(>1500 mL)、输血、入住重症监护病房、使用血管活性药物、机械通气/插管以及器官损伤。采用嵌套、分层交叉验证方法调整模型超参数并评估其泛化能力。梯度提升树分类器模型纳入了数值变量的标准缩放和分类变量的独热编码预处理步骤。使用受试者操作特征曲线下面积(AUC)、阳性和阴性预测值(PPV、NPV)以及F1分数评估模型性能。还确定了变量重要性排名。

结果

在401例PAS病例中,326例(81%)接受了子宫切除术。在401例PAS病例中,309例(77%)至少发生了一项定义为手术并发症的事件。我们的预测模型AUC为0.79(95%置信区间:0.69,0.89),PPV为0.79,NPV为0.76,F1分数为0.88。最能预测手术并发症的变量是子宫切除术的完成情况、孕前体重指数(BMI)、孕中期未进行超声检查、社会经济地位邮政编码、分娩时BMI、产前检查次数以及分娩时间。

结论

通过识别增加患者风险的社会和产科特征,ML模型有助于预测PAS相关手术并发症。利用ML可为PAS病例的风险和复杂性分层奠定基础,以优化手术规划。

关键点

· ML模型有助于预测PAS相关手术并发症。· PAS的最佳管理仍不明确。· 利用ML可为PAS病例的风险和复杂性分层奠定基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验