Singh Jatin, Kokenberger Grant, Pu Lucas, Chan Ernest, Ali Alaa, Moghbeli Kaveh, Yu Tong, Hage Chadi A, Sanchez Pablo G, Pu Jiantao
Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
Division of Lung Transplant and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Eur Radiol. 2025 Apr;35(4):2005-2017. doi: 10.1007/s00330-024-11077-9. Epub 2024 Sep 18.
The current understanding of survival prediction of lung transplant (LTx) patients with systemic sclerosis (SSc) is limited. This study aims to identify novel image features from preoperative chest CT scans associated with post-LTx survival in SSc patients and integrate them into comprehensive prediction models.
We conducted a retrospective study based on a cohort of SSc patients with demographic information, clinical data, and preoperative chest CT scans who underwent LTx between 2004 and 2020. This cohort consists of 102 patients (mean age, 50 years ± 10, 61% (62/102) females). Five CT-derived body composition features (bone, skeletal muscle, visceral, subcutaneous, and intramuscular adipose tissues) and three CT-derived cardiopulmonary features (heart, arteries, and veins) were automatically computed using 3-D convolutional neural networks. Cox regression was used to identify post-LTx survival factors, generate composite prediction models, and stratify patients based on mortality risk. Model performance was assessed using the area under the receiver operating characteristics curve (ROC-AUC).
Muscle mass ratio, bone density, artery-vein volume ratio, muscle volume, and heart volume ratio computed from CT images were significantly associated with post-LTx survival. Models using only CT-derived features outperformed all state-of-the-art clinical models in predicting post-LTx survival. The addition of CT-derived features improved the performance of traditional models at 1-year, 3-year, and 5-year survival prediction with maximum AUC scores of 0.77 (0.67-0.86), 0.85 (0.77-0.93), and 0.90 (95% CI: 0.83-0.97), respectively.
The integration of CT-derived features with demographic and clinical features can significantly improve t post-LTx survival prediction and identify high-risk SSc patients.
Question What CT features can predict post-lung-transplant survival for SSc patients? Finding CT body composition features such as muscle mass, bone density, and cardiopulmonary volumes significantly predict survival. Clinical relevance Our individualized risk assessment tool can better guide clinicians in choosing and managing patients requiring lung transplant for systemic sclerosis.
目前对于系统性硬化症(SSc)患者肺移植(LTx)生存预测的认识有限。本研究旨在从术前胸部CT扫描中识别与SSc患者LTx术后生存相关的新图像特征,并将其整合到综合预测模型中。
我们基于2004年至2020年间接受LTx的SSc患者队列进行了一项回顾性研究,该队列包含人口统计学信息、临床数据以及术前胸部CT扫描。该队列由102例患者组成(平均年龄50岁±10岁,61%(62/102)为女性)。使用三维卷积神经网络自动计算五个CT衍生的身体成分特征(骨骼、骨骼肌、内脏、皮下和肌内脂肪组织)以及三个CT衍生的心肺特征(心脏、动脉和静脉)。采用Cox回归来识别LTx术后生存因素,生成复合预测模型,并根据死亡风险对患者进行分层。使用受试者操作特征曲线下面积(ROC-AUC)评估模型性能。
从CT图像计算得出的肌肉质量比、骨密度、动静脉体积比、肌肉体积和心脏体积比与LTx术后生存显著相关。仅使用CT衍生特征的模型在预测LTx术后生存方面优于所有当前最先进的临床模型。添加CT衍生特征提高了传统模型在1年、3年和5年生存预测中的性能,最大AUC分数分别为0.77(0.67 - 0.86)、0.85(0.77 - 0.93)和0.90(95%CI:0.83 - 0.97)。
将CT衍生特征与人口统计学和临床特征相结合可显著改善LTx术后生存预测,并识别高危SSc患者。
问题 哪些CT特征可预测SSc患者肺移植术后生存?发现 肌肉质量、骨密度和心肺体积等CT身体成分特征可显著预测生存。临床意义 我们的个体化风险评估工具可更好地指导临床医生选择和管理需要进行系统性硬化症肺移植的患者。