Suppr超能文献

使用深度学习对 CT 图像中的五种不同身体组织进行自动分割。

Automated segmentation of five different body tissues on computed tomography using deep learning.

机构信息

Department, of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

North Allegheny Senior High School, Wexford, USA.

出版信息

Med Phys. 2023 Jan;50(1):178-191. doi: 10.1002/mp.15932. Epub 2022 Sep 2.

Abstract

PURPOSE

To develop and validate a computer tool for automatic and simultaneous segmentation of five body tissues depicted on computed tomography (CT) scans: visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), skeletal muscle (SM), and bone.

METHODS

A cohort of 100 CT scans acquired on different subjects were collected from The Cancer Imaging Archive-50 whole-body positron emission tomography-CTs, 25 chest, and 25 abdominal. Five different body tissues (i.e., VAT, SAT, IMAT, SM, and bone) were manually annotated. A training-while-annotating strategy was used to improve the annotation efficiency. The 10-fold cross-validation method was used to develop and validate the performance of several convolutional neural networks (CNNs), including UNet, Recurrent Residual UNet (R2Unet), and UNet++. A grid-based three-dimensional patch sampling operation was used to train the CNN models. The CNN models were also trained and tested separately for each body tissue to see if they could achieve a better performance than segmenting them jointly. The paired sample t-test was used to statistically assess the performance differences among the involved CNN models RESULTS: When segmenting the five body tissues simultaneously, the Dice coefficients ranged from 0.826 to 0.840 for VAT, from 0.901 to 0.908 for SAT, from 0.574 to 0.611 for IMAT, from 0.874 to 0.889 for SM, and from 0.870 to 0.884 for bone, which were significantly higher than the Dice coefficients when segmenting the body tissues separately (p < 0.05), namely, from 0.744 to 0.819 for VAT, from 0.856 to 0.896 for SAT, from 0.433 to 0.590 for IMAT, from 0.838 to 0.871 for SM, and from 0.803 to 0.870 for bone.

CONCLUSION

There were no significant differences among the CNN models in segmenting body tissues, but jointly segmenting body tissues achieved a better performance than segmenting them separately.

摘要

目的

开发和验证一种用于自动同时分割计算机断层扫描(CT)扫描上显示的五种身体组织的计算机工具:内脏脂肪组织(VAT)、皮下脂肪组织(SAT)、肌肉间脂肪组织(IMAT)、骨骼肌(SM)和骨骼。

方法

从癌症成像档案-50 全身正电子发射断层扫描-CT、25 个胸部和 25 个腹部中收集了 100 个 CT 扫描的队列。对五种不同的身体组织(即 VAT、SAT、IMAT、SM 和骨骼)进行手动注释。使用边注释边训练的策略来提高注释效率。使用 10 折交叉验证方法开发和验证了几种卷积神经网络(CNN)的性能,包括 UNet、递归残差 UNet(R2Unet)和 UNet++。使用基于网格的三维补丁采样操作训练 CNN 模型。还分别训练和测试 CNN 模型以分割它们,以查看它们是否可以实现比联合分割更好的性能。使用配对样本 t 检验统计评估所涉及的 CNN 模型之间的性能差异。

结果

当同时分割五种身体组织时,VAT 的 Dice 系数范围为 0.826 至 0.840,SAT 的 Dice 系数范围为 0.901 至 0.908,IMAT 的 Dice 系数范围为 0.574 至 0.611,SM 的 Dice 系数范围为 0.874 至 0.889,骨骼的 Dice 系数范围为 0.870 至 0.884,这明显高于分别分割身体组织时的 Dice 系数(p<0.05),即 VAT 的 Dice 系数为 0.744 至 0.819,SAT 的 Dice 系数为 0.856 至 0.896,IMAT 的 Dice 系数为 0.433 至 0.590,SM 的 Dice 系数为 0.838 至 0.871,骨骼的 Dice 系数为 0.803 至 0.870。

结论

在分割身体组织方面,CNN 模型之间没有显着差异,但联合分割身体组织的性能优于单独分割。

相似文献

3
Deep learning method for localization and segmentation of abdominal CT.深度学习方法在腹部 CT 定位与分割中的应用。
Comput Med Imaging Graph. 2020 Oct;85:101776. doi: 10.1016/j.compmedimag.2020.101776. Epub 2020 Aug 14.
5
Estimating 3-D whole-body composition from a chest CT scan.从胸部 CT 扫描中估算 3-D 全身成分。
Med Phys. 2022 Nov;49(11):7108-7117. doi: 10.1002/mp.15821. Epub 2022 Jul 11.
10
Deep learning for abdominal adipose tissue segmentation with few labelled samples.基于少量标注样本的腹部脂肪组织分割的深度学习。
Int J Comput Assist Radiol Surg. 2022 Mar;17(3):579-587. doi: 10.1007/s11548-021-02533-8. Epub 2021 Nov 29.

引用本文的文献

本文引用的文献

2
Super U-Net: a modularized generalizable architecture.超级U型网络:一种模块化的可通用架构。
Pattern Recognit. 2022 Aug;128. doi: 10.1016/j.patcog.2022.108669. Epub 2022 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验