Department, of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
North Allegheny Senior High School, Wexford, USA.
Med Phys. 2023 Jan;50(1):178-191. doi: 10.1002/mp.15932. Epub 2022 Sep 2.
To develop and validate a computer tool for automatic and simultaneous segmentation of five body tissues depicted on computed tomography (CT) scans: visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), intermuscular adipose tissue (IMAT), skeletal muscle (SM), and bone.
A cohort of 100 CT scans acquired on different subjects were collected from The Cancer Imaging Archive-50 whole-body positron emission tomography-CTs, 25 chest, and 25 abdominal. Five different body tissues (i.e., VAT, SAT, IMAT, SM, and bone) were manually annotated. A training-while-annotating strategy was used to improve the annotation efficiency. The 10-fold cross-validation method was used to develop and validate the performance of several convolutional neural networks (CNNs), including UNet, Recurrent Residual UNet (R2Unet), and UNet++. A grid-based three-dimensional patch sampling operation was used to train the CNN models. The CNN models were also trained and tested separately for each body tissue to see if they could achieve a better performance than segmenting them jointly. The paired sample t-test was used to statistically assess the performance differences among the involved CNN models RESULTS: When segmenting the five body tissues simultaneously, the Dice coefficients ranged from 0.826 to 0.840 for VAT, from 0.901 to 0.908 for SAT, from 0.574 to 0.611 for IMAT, from 0.874 to 0.889 for SM, and from 0.870 to 0.884 for bone, which were significantly higher than the Dice coefficients when segmenting the body tissues separately (p < 0.05), namely, from 0.744 to 0.819 for VAT, from 0.856 to 0.896 for SAT, from 0.433 to 0.590 for IMAT, from 0.838 to 0.871 for SM, and from 0.803 to 0.870 for bone.
There were no significant differences among the CNN models in segmenting body tissues, but jointly segmenting body tissues achieved a better performance than segmenting them separately.
开发和验证一种用于自动同时分割计算机断层扫描(CT)扫描上显示的五种身体组织的计算机工具:内脏脂肪组织(VAT)、皮下脂肪组织(SAT)、肌肉间脂肪组织(IMAT)、骨骼肌(SM)和骨骼。
从癌症成像档案-50 全身正电子发射断层扫描-CT、25 个胸部和 25 个腹部中收集了 100 个 CT 扫描的队列。对五种不同的身体组织(即 VAT、SAT、IMAT、SM 和骨骼)进行手动注释。使用边注释边训练的策略来提高注释效率。使用 10 折交叉验证方法开发和验证了几种卷积神经网络(CNN)的性能,包括 UNet、递归残差 UNet(R2Unet)和 UNet++。使用基于网格的三维补丁采样操作训练 CNN 模型。还分别训练和测试 CNN 模型以分割它们,以查看它们是否可以实现比联合分割更好的性能。使用配对样本 t 检验统计评估所涉及的 CNN 模型之间的性能差异。
当同时分割五种身体组织时,VAT 的 Dice 系数范围为 0.826 至 0.840,SAT 的 Dice 系数范围为 0.901 至 0.908,IMAT 的 Dice 系数范围为 0.574 至 0.611,SM 的 Dice 系数范围为 0.874 至 0.889,骨骼的 Dice 系数范围为 0.870 至 0.884,这明显高于分别分割身体组织时的 Dice 系数(p<0.05),即 VAT 的 Dice 系数为 0.744 至 0.819,SAT 的 Dice 系数为 0.856 至 0.896,IMAT 的 Dice 系数为 0.433 至 0.590,SM 的 Dice 系数为 0.838 至 0.871,骨骼的 Dice 系数为 0.803 至 0.870。
在分割身体组织方面,CNN 模型之间没有显着差异,但联合分割身体组织的性能优于单独分割。