Suppr超能文献

内溶酶体功能障碍导致放射状胶质祖细胞脑内血管生成缺陷和血脑屏障完整性受损。

Endolysosomal dysfunction in radial glia progenitor cells leads to defective cerebral angiogenesis and compromised blood-brain barrier integrity.

机构信息

Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.

Institute for Neurovascular Cell Biology, Medical Faculty, University of Bonn, Bonn, Germany.

出版信息

Nat Commun. 2024 Sep 17;15(1):8158. doi: 10.1038/s41467-024-52365-8.

Abstract

The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide insights into NVU formation and function and offer avenues for investigating diseases involving white matter defects and vascular abnormalities.

摘要

神经血管单元(NVU)是一种复杂的多细胞结构,有助于维持脑内环境稳定和血脑屏障(BBB)的完整性。虽然有大量证据表明 NVU 的改变与脑血管疾病和神经退行性变有关,但潜在的分子机制尚不清楚。在这里,我们使用携带 Scavenger Receptor B2 突变的斑马鱼胚胎来研究不同 NVU 成分之间的相互作用。通过活体成像和遗传操作,我们证明了突变型 RGC 中内溶酶体腔酸化受损导致 Notch3 信号转导受损,从而诱导过度的神经发生和减少的神经胶质分化。我们进一步证明,神经元/神经胶质平衡的改变导致 VEGF 和 Wnt 信号转导受损,导致严重的血管缺陷、出血和渗漏的 BBB。总的来说,我们的研究结果为 NVU 的形成和功能提供了新的见解,并为研究涉及白质缺陷和血管异常的疾病提供了途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d8/11408700/f848389b3a01/41467_2024_52365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验