Suppr超能文献

基于可解释描述符的机器学习辅助双原子位点设计统一电催化反应

Machine learning-assisted dual-atom sites design with interpretable descriptors unifying electrocatalytic reactions.

作者信息

Lin Xiaoyun, Du Xiaowei, Wu Shican, Zhen Shiyu, Liu Wei, Pei Chunlei, Zhang Peng, Zhao Zhi-Jian, Gong Jinlong

机构信息

School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin, 300072, China.

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.

出版信息

Nat Commun. 2024 Sep 17;15(1):8169. doi: 10.1038/s41467-024-52519-8.

Abstract

Low-cost, efficient catalyst high-throughput screening is crucial for future renewable energy technology. Interpretable machine learning is a powerful method for accelerating catalyst design by extracting physical meaning but faces huge challenges. This paper describes an interpretable descriptor model to unify activity and selectivity prediction for multiple electrocatalytic reactions (i.e., O/CO/N reduction and O evolution reactions), utilizing only easily accessible intrinsic properties. This descriptor, named ARSC, successfully decouples the atomic property (A), reactant (R), synergistic (S), and coordination effects (C) on the d-band shape of dual-atom sites, which is built upon our developed physically meaningful feature engineering and feature selection/sparsification (PFESS) method. Driven by this descriptor, we can rapidly locate optimal catalysts for various products instead of over 50,000 density functional theory calculations. The model's universality has been validated by abundant reported works and subsequent experiments, where Co-Co/Ir-Qv3 are identified as optimal bifunctional oxygen reduction and evolution electrocatalysts. This work opens the avenue for intelligent catalyst design in high-dimensional systems linked with physical insights.

摘要

低成本、高效的催化剂高通量筛选对于未来的可再生能源技术至关重要。可解释的机器学习是一种通过提取物理意义来加速催化剂设计的强大方法,但面临巨大挑战。本文描述了一种可解释的描述符模型,用于统一多种电催化反应(即氧/一氧化碳/氮还原和析氧反应)的活性和选择性预测,仅利用易于获取的本征性质。这个名为ARSC的描述符成功地将双原子位点d带形状上的原子性质(A)、反应物(R)、协同(S)和配位效应(C)解耦,它基于我们开发的具有物理意义的特征工程和特征选择/稀疏化(PFESS)方法构建。受此描述符驱动,我们可以快速定位各种产物的最优催化剂,而无需进行超过50000次密度泛函理论计算。该模型的通用性已通过大量已发表的工作和后续实验得到验证,其中Co-Co/Ir-Qv3被确定为最优的双功能氧还原和析氧电催化剂。这项工作为与物理见解相关的高维系统中的智能催化剂设计开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af6d/11408493/f2e1efa43cd9/41467_2024_52519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验