Suppr超能文献

用于电化学将CO还原为甲烷的杂化BCN纳米片负载单镍原子上的双原子金属和非金属位点催化剂:兼具高活性和选择性

Dual-Atom Metal and Nonmetal Site Catalyst on a Single Nickel Atom Supported on a Hybridized BCN Nanosheet for Electrochemical CO Reduction to Methane: Combining High Activity and Selectivity.

作者信息

Zhang Yuqin, Liu Tianyong, Wang Xiaohang, Dang Qian, Zhang Mingjie, Zhang Shiyong, Li Xingxing, Tang Shaobin, Jiang Jun

机构信息

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China.

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

出版信息

ACS Appl Mater Interfaces. 2022 Feb 23;14(7):9073-9083. doi: 10.1021/acsami.1c22761. Epub 2022 Feb 9.

Abstract

Atomically dispersed nitrogen-coordinated transition-metal sites supported on graphene (TM-N-C) offer promising potential for the electrochemical carbon dioxide reduction reaction (CORR). However, a few TM-N-C single-atom catalysts (SAC) are capable of reducing CO to multielectron products with high activity and selectivity. Herein, using density functional theory calculations, we investigated the electrocatalytic performance of a single TM atom embedded into a defective BCN nanosheet for CORR. The N and B atom co-coordinated TM center, namely, TM-BN, constructs a symmetry-breaking site, which strengthens the overlapping of atomic orbitals, and enables the linear CO to be curved and activated, compared to the weak coupling of CO with the symmetric TM-N site. Moreover, the TM-BN sites play a role of dual-atom active sites, in which the TM atom serves as the carbon adsorption site and the B atom acts as the oxygen adsorption site, largely stabilizing the key intermediates, especially *COOH. The symmetry-breaking coordination structures shift the d-band center of the TM atom toward the Fermi level and thus facilitate CO reduction to hydrocarbons and oxygenates. As a result, different from the TM-N-C structure that leads to CO as the major product, the Ni atom supported on BCN can selectively catalyze CO conversion into CH, with an ultralow limiting potential of -0.07 V, while suppressing the hydrogen evolution reaction. Our finding suggests that introduction of a nonmetal active site adjacent to the metal site provides a new avenue for achieving efficient multi-intermediate electrocatalytic reactions.

摘要

负载在石墨烯上的原子级分散的氮配位过渡金属位点(TM-N-C)在电化学二氧化碳还原反应(CORR)中具有广阔的应用前景。然而,只有少数TM-N-C单原子催化剂(SAC)能够将CO高效且选择性地还原为多电子产物。在此,我们使用密度泛函理论计算研究了嵌入缺陷BCN纳米片中的单个TM原子对CORR的电催化性能。N和B原子共配位的TM中心,即TM-BN,构建了一个对称性破缺位点,与CO与对称TM-N位点的弱耦合相比,该位点增强了原子轨道的重叠,并使线性CO弯曲并活化。此外,TM-BN位点起到双原子活性位点的作用,其中TM原子作为碳吸附位点,B原子作为氧吸附位点,极大地稳定了关键中间体,特别是*COOH。对称性破缺的配位结构使TM原子的d带中心向费米能级移动,从而促进CO还原为碳氢化合物和含氧化合物。结果,与以CO为主要产物的TM-N-C结构不同,负载在BCN上的Ni原子可以选择性地催化CO转化为CH,极限电位低至-0.07 V,同时抑制析氢反应。我们的研究结果表明,在金属位点附近引入非金属活性位点为实现高效多中间体电催化反应提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验