Licht Gad, Hofstetter Kyle, Wang Xirui, Licht Stuart
C2CNT LLC, A4 188 Triple Diamond Blvd, Venice, FL, 34275, USA.
Carbon Corp, 1035 26 St NE, Calgary, AB, T2A 6K8, Canada.
Commun Chem. 2024 Sep 18;7(1):211. doi: 10.1038/s42004-024-01306-z.
The molten LiCO transformation of CO to oxygen and graphene nanocarbons (GNCs), such as carbon nanotubes, is a large scale process of CO removal to mitigate climate change. Sustainability benefits include the stability and storage of the products, and the GNC product value is an incentive for carbon removal. However, high LiCO cost and its competitive use as the primary raw material for EV batteries are obstacles. Common alternative alkali or alkali earth carbonates are ineffective substitutes due to impure GNC products or high energy limitations. A new decarbonization chemistry utilizing a majority of SrCO is investigated. SrCO is much more abundant, and an order of magnitude less expensive, than LiCO. The equivalent affinities of SrCO and LiCO for absorbing and releasing CO are demonstrated to be comparable, and are unlike all the other alkali and alkali earth carbonates. The temperature domain in which the CO transformation to GNCs can be effective is <800 °C. Although the solidus temperature of SrCO is 1494 °C, it is remarkably soluble in LiCO at temperatures less than 800 °C, and the electrolysis energy is low. High purity CNTs are synthesized from CO respectively in SrCO based electrolytes containing 30% or less LiCO.
将一氧化碳转化为氧气以及石墨烯纳米碳(如碳纳米管)的熔融碳酸锂转化过程,是大规模去除一氧化碳以缓解气候变化的过程。可持续性效益包括产品的稳定性和储存性,并且石墨烯纳米碳产品的价值是碳去除的一个激励因素。然而,碳酸锂成本高昂以及其作为电动汽车电池主要原材料的竞争性用途是障碍。常见的替代碱金属或碱土金属碳酸盐由于石墨烯纳米碳产品不纯或能量限制高而不是有效的替代品。研究了一种利用大部分碳酸锶的新型脱碳化学方法。碳酸锶比碳酸锂丰富得多,且价格便宜一个数量级。已证明碳酸锶和碳酸锂吸收和释放一氧化碳的等效亲和力相当,这与所有其他碱金属和碱土金属碳酸盐不同。一氧化碳转化为石墨烯纳米碳有效的温度范围是<800°C。尽管碳酸锶的固相线温度为1494°C,但在低于800°C的温度下它在碳酸锂中具有显著的溶解性,并且电解能量较低。分别在含30%或更少碳酸锂的碳酸锶基电解质中由一氧化碳合成了高纯度碳纳米管。