Suppr超能文献

印度西孟加拉邦灾害多发地区风险感知健康治理的最优监测和评价(M&E)生产前沿的可能性。

Possibility of the optimum monitoring and evaluation (M&E) production frontier for risk-informed health governance in disaster-prone districts of West Bengal, India.

机构信息

Institute of International Health, Charité - Universitätsmedizin, Berlin, Germany.

Einfach Business Analytics Pvt. Ltd., Kolkata, India.

出版信息

J Health Popul Nutr. 2024 Sep 17;43(1):148. doi: 10.1186/s41043-024-00632-1.

Abstract

An efficient M&E system in public healthcare is crucial for achieving universal health coverage in low- and middle-income countries, especially when the need for service remains unmet due to the exposure of the population to disaster risks and uncertainties. Current research has conducted exploratory and predictive analyses to estimate the determinants of sustainable M&E solutions for ensuring uninterrupted access during and after disasters. The aim was to estimate the efficiency of reaching a higher M&E production frontier via the Cobb‒Douglas model and stochastic frontier model as the basic theoretical and empirical frameworks. The research followed a deductive approach and used a stratified purposive sampling method to collect data from different layers of health and disaster governance in a flood-prone rural setting in the Malda, South 24 Parganas and Purulia districts in West Bengal, India. The present mixed-method study revealed multiple challenges in healthcare seeking during disasters and how a well-structured M&E system can increase system readiness to combat these challenges. The stochastic frontier model estimated the highest M&E frontier producing the most attainable M&E effectiveness through horizontal convergence between departments, enhanced coordination, the availability of frontline health workers at health centers, the adoption of learned innovation and the outsourcing of the evaluation component to external evaluators to improve M&E process quality. Although the study has several limitations, it shows the potential to increase technical and allocative efficiency through building skills in innovative techniques and applying them in process implementation. In the future, research on strategy improvement followed by real-world evidence-based policy advocacy is needed to increase the impact of M&E on access to healthcare services.

摘要

公共卫生领域的高效监测与评价(M&E)系统对于实现中低收入国家的全民健康覆盖至关重要,尤其是在由于人口面临灾害风险和不确定性而导致服务需求未得到满足的情况下。目前的研究已经进行了探索性和预测性分析,以估计可持续的 M&E 解决方案的决定因素,以确保在灾害期间和之后能够不间断地获得服务。目的是通过柯布-道格拉斯模型和随机前沿模型来估计实现更高 M&E 生产前沿的效率,这两种模型是基本的理论和经验框架。该研究采用演绎法,并使用分层目的抽样方法,从印度西孟加拉邦马尔达、南 24 帕尔干那和普鲁利亚地区洪水多发农村地区的不同卫生和灾害治理层次收集数据。本混合方法研究揭示了灾害期间医疗保健寻求方面的多项挑战,以及一个结构良好的 M&E 系统如何提高系统应对这些挑战的准备程度。随机前沿模型通过部门之间的水平收敛、增强协调、在卫生中心配备一线卫生工作者、采用创新技术以及将评估部分外包给外部评估人员来提高 M&E 过程质量,从而估计出最高的 M&E 前沿,产生最可实现的 M&E 效果。尽管该研究存在一些局限性,但它显示了通过在创新技术方面建立技能并将其应用于流程实施中,提高技术和配置效率的潜力。未来,需要进行策略改进方面的研究,并进行基于真实世界证据的政策倡导,以增加 M&E 对获得医疗服务的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00f1/11409740/a44dffdcb8bd/41043_2024_632_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验