The School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, China.
Adv Sci (Weinh). 2024 Nov;11(42):e2409150. doi: 10.1002/advs.202409150. Epub 2024 Sep 18.
DNA nanotechnology plays a crucial role in precise cancer medicine. Currently, molecular logic circuits are applied to detect tumor-specific biomarkers and control the release of therapeutic drugs. However, these systems lack self-learning capabilities for intelligent diagnostics in biological samples, and their data processing capabilities are limited. Here, a molecular learning vector quantization neural network (LVQNN) model based on DNA strand displacement (DSD) technology for breast tumor diagnosis is developed. Compared to previous work, the molecular LVQNN boasts powerful computing abilities, handling high-dimensional data for intelligent cancer diagnosis. To verify the feasibility and versatility of the network, two distinct typical datasets are selected: one from a single source with cell morphology data from 569 cases, and a more extensive one spanning different populations and ages, with miRNA gene expression data from 1881 cases. By using the molecular LVQNN, diagnostic experiments are conducted on 50 and 120 public individuals from these two datasets, respectively, achieving accuracy rates of 94% and 97.5%. This study demonstrates that the LVQNN model exhibits significant advantages in breast cancer diagnosis and enhances diagnostic accuracy while introducing new approaches for intelligent cancer diagnosis, anticipated to bring significant breakthroughs and application prospects to precise cancer medicine.
DNA 纳米技术在精准癌症医学中起着至关重要的作用。目前,分子逻辑电路被应用于检测肿瘤特异性生物标志物并控制治疗药物的释放。然而,这些系统缺乏在生物样本中进行智能诊断的自学习能力,并且其数据处理能力有限。在这里,我们开发了一种基于 DNA 链置换 (DSD) 技术的用于乳腺癌诊断的分子学习向量量化神经网络 (LVQNN) 模型。与之前的工作相比,分子 LVQNN 具有强大的计算能力,可以处理高维数据,用于智能癌症诊断。为了验证网络的可行性和通用性,选择了两个不同的典型数据集:一个来自单一来源,包含 569 例细胞形态学数据;另一个则跨越不同人群和年龄,包含 1881 例 miRNA 基因表达数据。使用分子 LVQNN,对这两个数据集的 50 个和 120 个公共个体进行了诊断实验,分别达到了 94%和 97.5%的准确率。本研究表明,LVQNN 模型在乳腺癌诊断中具有显著优势,提高了诊断准确性,同时为智能癌症诊断引入了新方法,有望为精准癌症医学带来重大突破和应用前景。