IEEE Trans Med Imaging. 2024 Jan;43(1):503-516. doi: 10.1109/TMI.2023.3309874. Epub 2024 Jan 2.
Brain disease propagation is associated with characteristic alterations in the structural and functional connectivity networks of the brain. To identify disease-specific network representations, graph convolutional networks (GCNs) have been used because of their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks. However, existing GCNs generally focus on learning the discriminative region of interest (ROI) features, often ignoring important topological information that enables the integration of connectome patterns of brain activity. In addition, most methods fail to consider the vulnerability of GCNs to perturbations in network properties of the brain, which considerably degrades the reliability of diagnosis results. In this study, we propose an adversarially trained persistent homology-based graph convolutional network (ATPGCN) to capture disease-specific brain connectome patterns and classify brain diseases. First, the brain functional/structural connectivity is constructed using different neuroimaging modalities. Then, we develop a novel strategy that concatenates the persistent homology features from a brain algebraic topology analysis with readout features of the global pooling layer of a GCN model to collaboratively learn the individual-level representation. Finally, we simulate the adversarial perturbations by targeting the risk ROIs from clinical prior, and incorporate them into a training loop to evaluate the robustness of the model. The experimental results on three independent datasets demonstrate that ATPGCN outperforms existing classification methods in disease identification and is robust to minor perturbations in network architecture. Our code is available at https://github.com/CYB08/ATPGCN.
脑疾病的传播与大脑结构和功能连接网络的特征改变有关。为了识别特定疾病的网络表示,已经使用了图卷积网络 (GCN),因为它们具有强大的图嵌入能力,可以描述大脑网络的非欧几里得结构。然而,现有的 GCN 通常侧重于学习有区别的感兴趣区域 (ROI) 特征,而经常忽略了能够整合大脑活动连接组模式的重要拓扑信息。此外,大多数方法都没有考虑到 GCN 对大脑网络属性的扰动的脆弱性,这极大地降低了诊断结果的可靠性。在这项研究中,我们提出了一种基于对抗训练的持久同调图卷积网络 (ATPGCN),用于捕获特定疾病的大脑连接组模式并对大脑疾病进行分类。首先,使用不同的神经影像学模式构建大脑功能/结构连接。然后,我们开发了一种新策略,将来自大脑代数拓扑分析的持久同调特征与 GCN 模型的全局池化层的读出特征串联起来,共同学习个体水平的表示。最后,我们通过针对临床先验的风险 ROI 模拟对抗性扰动,并将其纳入训练循环中,以评估模型的稳健性。在三个独立数据集上的实验结果表明,ATPGCN 在疾病识别方面优于现有的分类方法,并且对网络结构的微小扰动具有鲁棒性。我们的代码可在 https://github.com/CYB08/ATPGCN 上获得。