Suppr超能文献

利用化学蛋白质组学连接子的诊断离子改进天然产物蛋白质靶点的反卷积分析。

Improved deconvolution of natural products' protein targets using diagnostic ions from chemical proteomics linkers.

作者信息

Wiest Andreas, Kielkowski Pavel

机构信息

LMU Munich, Department of Chemistry, Butenandtstr. 5-13, 81377 Munich, Germany.

出版信息

Beilstein J Org Chem. 2024 Sep 12;20:2323-2341. doi: 10.3762/bjoc.20.199. eCollection 2024.

Abstract

Identification of interactions between proteins and natural products or similar active small molecules is crucial for understanding of their mechanism of action on a molecular level. To search elusive, often labile, and low-abundant conjugates between proteins and active compounds, chemical proteomics introduces a feasible strategy that allows to enrich and detect these conjugates. Recent advances in mass spectrometry techniques and search algorithms provide unprecedented depth of proteome coverage and the possibility to detect desired modified peptides with high sensitivity. The chemical 'linker' connecting an active compound-protein conjugate with a detection tag is the critical component of all chemical proteomic workflows. In this review, we discuss the properties and applications of different chemical proteomics linkers with special focus on their fragmentation releasing diagnostic ions and how these may improve the confidence in identified active compound-peptide conjugates. The application of advanced search options improves the identification rates and may help to identify otherwise difficult to find interactions between active compounds and proteins, which may result from unperturbed conditions, and thus are of high physiological relevance.

摘要

识别蛋白质与天然产物或类似活性小分子之间的相互作用对于在分子水平上理解它们的作用机制至关重要。为了寻找蛋白质与活性化合物之间难以捉摸、通常不稳定且丰度较低的缀合物,化学蛋白质组学引入了一种可行的策略,能够富集和检测这些缀合物。质谱技术和搜索算法的最新进展提供了前所未有的蛋白质组覆盖深度,以及高灵敏度检测所需修饰肽段的可能性。将活性化合物 - 蛋白质缀合物与检测标签连接起来的化学“连接子”是所有化学蛋白质组学工作流程的关键组成部分。在本综述中,我们讨论了不同化学蛋白质组学连接子的性质和应用,特别关注它们的碎片化释放诊断离子,以及这些如何提高对已鉴定的活性化合物 - 肽缀合物的可信度。先进搜索选项的应用提高了识别率,可能有助于识别在未受干扰条件下活性化合物与蛋白质之间难以发现的相互作用,因此具有高度的生理相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b2/11406061/b9a27a755d0d/Beilstein_J_Org_Chem-20-2323-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验