Garibay Rubio Carlos Rodrigo, Yamori Katsuya, Nakano Genta, Peralta Gutiérrez Astrid Renneé, Morales Chainé Silvia, Robles García Rebeca, Landa-Ramírez Edgar, Bojorge Estrada Alexis, Bosch Maldonado Alejandro, Tejadilla Orozco Diana Iris
Graduate School of Informatics, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto 606-8317, Japan.
Disaster Prevention Research Institute, Gokasho, Uji, Kyoto 611-0011, Japan.
Data Brief. 2024 Aug 28;57:110877. doi: 10.1016/j.dib.2024.110877. eCollection 2024 Dec.
The prevalence of mental health problems constitutes an open challenge for modern societies, particularly for low and middle-income countries with wide gaps in mental health support. With this in mind, five datasets were analyzed to track mental health trends in Mexico City during the pandemic's first year. This included 33,234 responses to an online mental health risk questionnaire, 349,202 emergency calls, and city epidemiological, mobility, and online trend data. The COVID-19 mental health risk questionnaire collects information on socioeconomic status, health conditions, bereavement, lockdown status, and symptoms of acute stress, sadness, avoidance, distancing, anger, and anxiety, along with binge drinking and abuse experiences. The lifeline service dataset includes daily call statistics, such as total, connected, and abandoned calls, average quit time, wait time, and call duration. Epidemiological, mobility, and trend data provide a daily overview of the city's situation. The integration of the datasets, as well as the preprocessing, optimization, and machine learning algorithms applied to them, evidence the usefulness of a combined analytic approach and the high reuse potential of the data set, particularly as a machine learning training set for evaluating and predicting anxiety, depression, and post-traumatic stress disorder, as well as general psychological support needs and possible system loads.
心理健康问题的普遍存在对现代社会构成了一项严峻挑战,尤其是对于心理健康支持存在巨大差距的低收入和中等收入国家而言。考虑到这一点,我们分析了五个数据集,以追踪墨西哥城在疫情第一年的心理健康趋势。这包括对一份在线心理健康风险问卷的33234份回复、349202个紧急呼叫,以及城市流行病学、流动性和在线趋势数据。新冠疫情心理健康风险问卷收集了有关社会经济地位、健康状况、丧亲情况、封锁状态,以及急性应激、悲伤、回避、社交距离、愤怒和焦虑症状的信息,同时还包括暴饮和滥用经历。生命线服务数据集包括每日呼叫统计数据,如总呼叫数、接通呼叫数和放弃呼叫数、平均挂断时间、等待时间和通话时长。流行病学、流动性和趋势数据提供了该城市情况的每日概述。数据集的整合,以及应用于这些数据集的预处理、优化和机器学习算法,证明了综合分析方法的有用性以及数据集的高重用潜力,特别是作为用于评估和预测焦虑、抑郁和创伤后应激障碍,以及一般心理支持需求和可能的系统负荷的机器学习训练集。