Du Pengfei, Ait El Fakir Abdellah, Zhao Shirun, Dostagir Nazmul Hasan M D, Pan HongLi, Ting Kah Wei, Mine Shinya, Qian Yucheng, Shimizu Ken-Ichi, Toyao Takashi
Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology 4-2-1 Nigatake, Miyagino Sendai 983-8551 Japan.
Chem Sci. 2024 Aug 22;15(38):15925-34. doi: 10.1039/d4sc02588a.
Technological enablers that use CO as a feedstock to create value-added chemicals, including ethanol, have gained widespread appeal. They offer a potential solution to climate change and promote the development of a circular economy. However, the conversion of CO to ethanol poses significant challenges, not only because CO is a thermodynamically stable and chemically inert molecule but also because of the complexity of the reaction routes and uncontrollability of C-C coupling. In this study, we developed an efficient catalyst, K-Fe-Cu-Zn/ZrO (KFeCuZn/ZrO), which enhances the EtOH space time yield (STY) to 5.4 mmol g h, under optimized conditions (360 °C, 4 MPa, and 12 L g h). Furthermore, we investigated the roles of each constituent element using / spectroscopy such as X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). These results demonstrate that all components are necessary for efficient ethanol synthesis.
以一氧化碳(CO)为原料生产包括乙醇在内的增值化学品的技术推动者已获得广泛关注。它们为气候变化提供了潜在的解决方案,并促进了循环经济的发展。然而,将CO转化为乙醇面临重大挑战,这不仅是因为CO是一种热力学稳定且化学惰性的分子,还因为反应路线复杂以及碳-碳偶联的不可控性。在本研究中,我们开发了一种高效催化剂K-Fe-Cu-Zn/ZrO(KFeCuZn/ZrO),在优化条件(360°C、4MPa和12L g h)下,它能将乙醇时空产率(STY)提高到5.4 mmol g h。此外,我们使用X射线吸收光谱(XAS)和漫反射红外傅里叶变换光谱(DRIFTS)等光谱技术研究了每种组成元素的作用。这些结果表明,所有组分对于高效乙醇合成都是必需的。