Wang Yang, Wang Wenhang, He Ruosong, Li Meng, Zhang Jinqiang, Cao Fengliang, Liu Jianxin, Lin Shiyuan, Gao Xinhua, Yang Guohui, Wang Mingqing, Xing Tao, Liu Tao, Liu Qiang, Hu Han, Tsubaki Noritatsu, Wu Mingbo
College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China.
Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202311786. doi: 10.1002/anie.202311786. Epub 2023 Oct 10.
The conversion of CO into ethanol with renewable H has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnO -Fe C -Fe O , in which the electron-transfer pathway (ZnO →Fe species or carbon layer) ensures the appropriate adsorption strength of -CO* on the catalytic interface, facilitating C-C coupling between -CH * and -CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 g kg h (with CO of 10 vol % co-feeding) is achieved from CO hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.
利用可再生氢将一氧化碳转化为乙醇,因其兼具碳消除和化学合成的综合功能而备受关注,但仍具有挑战性。催化剂的电子性质对于确定关键中间体的吸附强度和构型至关重要,从而改变反应网络以实现定向合成。在此,我们描述了一种催化体系,其中采用碳缓冲层来调节三元ZnO-Fe₃C-Fe₂O₃的电子性质,其中电子转移途径(ZnO→Fe物种或碳层)确保了CO在催化界面上具有适当的吸附强度,促进了CHₓ与*CO之间的C-C偶联以合成乙醇。受益于这种独特的电子转移缓冲效应,通过CO加氢实现了极高的乙醇产率,即366.6 g kg⁻¹ h⁻¹(CO共进料体积分数为10%)。这项工作为高度定向合成的催化剂设计提供了一种强大的电子调制策略。