Singh Yadav Avilash, Roeder Adrienne H K
Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States.
Front Plant Sci. 2024 Sep 3;15:1449195. doi: 10.3389/fpls.2024.1449195. eCollection 2024.
sepals are excellent models for analyzing growth of entire organs due to their relatively small size, which can be captured at a cellular resolution under a confocal microscope. To investigate how differential growth of connected cell layers generate unique organ morphologies, it is necessary to live-image deep into the tissue. However, imaging deep cell layers of the sepal (or plant tissues in general) is practically challenging. Image processing is also difficult due to the low signal-to-noise ratio of the deeper tissue layers, an issue mainly associated with live imaging datasets. Addressing some of these challenges, we provide an optimized methodology for live imaging sepals, and subsequent image processing. For live imaging early-stage sepals, we found that the use of a bright fluorescent membrane marker, coupled with increased laser intensity and an enhanced Z- resolution produces high-quality images suitable for downstream image processing. Our optimized parameters allowed us to image the bottommost cell layer of the sepal (inner epidermal layer) without compromising viability. We used a 'voxel removal' technique to visualize the inner epidermal layer in MorphoGraphX image processing software. We also describe the MorphoGraphX parameters for creating a 2.5D mesh surface for the inner epidermis. Our parameters allow for the segmentation and parent tracking of individual cells through multiple time points, despite the weak signal of the inner epidermal cells. While we have used sepals to illustrate our approach, the methodology will be useful for researchers intending to live-image and track growth of deeper cell layers in 2.5D for any plant tissue.
由于萼片相对较小,能够在共聚焦显微镜下以细胞分辨率进行捕捉,因此萼片是分析整个器官生长的理想模型。为了研究相连细胞层的差异生长如何产生独特的器官形态,有必要对组织进行深度实时成像。然而,对萼片(或一般植物组织)的深层细胞层进行成像在实际操作中具有挑战性。由于深层组织层的信噪比低,图像处理也很困难,这一问题主要与实时成像数据集有关。为应对其中一些挑战,我们提供了一种用于萼片实时成像及后续图像处理的优化方法。对于早期萼片的实时成像,我们发现使用明亮的荧光膜标记物,结合增加激光强度和提高Z分辨率,可产生适用于下游图像处理的高质量图像。我们优化后的参数使我们能够对萼片的最底层细胞层(内表皮层)进行成像而不影响其活力。我们使用了一种“体素去除”技术在MorphoGraphX图像处理软件中可视化内表皮层。我们还描述了用于为内表皮创建2.5D网格表面的MorphoGraphX参数。尽管内表皮细胞信号较弱,但我们的参数允许通过多个时间点对单个细胞进行分割和母体追踪。虽然我们以萼片为例来说明我们的方法,但该方法对于想要对任何植物组织的深层细胞层进行2.5D实时成像和追踪生长的研究人员将是有用的。