Suppr超能文献

动态榫卯互锁助力水合软机器人实现越野运动。

The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion.

作者信息

Wu Baoyi, Xue Yaoting, Ali Israt, Lu Huanhuan, Yang Yuming, Yang Xuxu, Lu Wei, Zheng Yinfei, Chen Tao

机构信息

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.

出版信息

Research (Wash D C). 2022 Dec 19;2022:0015. doi: 10.34133/research.0015. eCollection 2022.

Abstract

Natural locomotion such as walking, crawling, and swimming relies on spatially controlled deformation of soft tissues, which could allow efficient interaction with the external environment. As one of the ideal candidates for biomimetic materials, hydrogels can exhibit versatile bionic morphings. However, it remains an enormous challenge to transfer these in situ deformations to locomotion, particularly above complex terrains. Herein, inspired by the crawling mode of inchworms, an isotropic hydrogel with thermoresponsiveness could evolve to an anisotropic hydrogel actuator via interfacial diffusion polymerization, further evolving to multisection structure and exhibiting adaptive deformation with diverse degrees of freedom. Therefore, a dynamic mortise-and-tenon interlock could be generated through the interaction between the self-deformation of the hydrogel actuator and rough terrains, inducing continual multidimensional locomotion on various artificial rough substrates and natural sandy terrain. Interestingly, benefiting from the powerful mechanical energy transfer capability, the crawlable hydrogel actuators could also be utilized as hydrogel motors to activate static cargos to overstep complex terrains, which exhibit the potential application of a biomimetic mechanical discoloration device. Therefore, we believe that this design principle and control strategy may be of potential interest to the field of deformable materials, soft robots, and biomimetic devices.

摘要

诸如行走、爬行和游泳等自然运动依赖于软组织的空间控制变形,这能够实现与外部环境的高效交互。作为仿生材料的理想候选者之一,水凝胶可呈现出多种仿生变形。然而,将这些原位变形转化为运动,尤其是在复杂地形上,仍然是一个巨大的挑战。在此,受尺蠖爬行模式的启发,一种具有热响应性的各向同性水凝胶可通过界面扩散聚合演变成各向异性水凝胶致动器,进而演变成多节结构并展现出具有不同自由度的自适应变形。因此,通过水凝胶致动器的自变形与粗糙地形之间的相互作用,可产生动态榫卯互锁,从而在各种人工粗糙基底和天然沙地地形上诱导持续的多维运动。有趣的是,得益于强大的机械能传递能力,可爬行水凝胶致动器还可用作水凝胶马达,以驱动静态货物跨越复杂地形,这展示了仿生机械变色装置的潜在应用。因此,我们相信这种设计原理和控制策略可能会引起可变形材料、软机器人和仿生装置领域的潜在兴趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49aa/11407522/6542465e14b2/research.0015.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验