Suppr超能文献

开源代码对全球健康的贡献:以抗疟药物研发为例。

Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery.

作者信息

Turon Gemma, Tse Edwin, Qiu Xin, Todd Matthew, Duran-Frigola Miquel

机构信息

Ersilia Open Source Initiative, Barcelona 08039, Spain.

School of Pharmacy, University College London, London WC1N 1AX, U.K.

出版信息

ACS Med Chem Lett. 2024 Aug 1;15(9):1645-1650. doi: 10.1021/acsmedchemlett.4c00131. eCollection 2024 Sep 12.

Abstract

The discovery of treatments for infectious diseases that affect the poorest countries has been stagnant for decades. As long as expected returns on investment remain low, pharmaceutical companies' lack of interest in this disease area must be compensated for with collaborative efforts from the public sector. New approaches to drug discovery, inspired by the "open source" philosophy prevalent in software development, offer a platform for experts from diverse backgrounds to contribute their skills, enhancing reproducibility, progress tracking, and public discussion. Here, we present the first efforts of Ersilia, an initiative focused on attracting data scientists into contributing to global health, toward meeting the goals of Open Source Malaria, a consortium of medicinal chemists investigating antimalarial compounds using a purely open science approach. We showcase the chemical space exploration of a set of triazolopyrazine compounds with potent antiplasmodial activity and discuss how open source practices can serve as a common ground to make drug discovery more inclusive and participative.

摘要

几十年来,针对影响最贫困国家的传染病的治疗方法的发现一直停滞不前。只要投资的预期回报仍然很低,制药公司对这一疾病领域缺乏兴趣的问题就必须通过公共部门的合作努力来弥补。受软件开发中盛行的“开源”理念启发的新药研发方法,为来自不同背景的专家提供了一个平台,让他们能够贡献自己的技能,提高可重复性、进度跟踪和公众讨论。在此,我们展示了Ersilia的首次努力,这是一项致力于吸引数据科学家为全球健康做出贡献的倡议,旨在实现开源疟疾联盟的目标,该联盟是一群药用化学家,他们使用纯粹的开放科学方法研究抗疟化合物。我们展示了一组具有强大抗疟活性的三唑并吡嗪化合物的化学空间探索,并讨论了开源实践如何能够成为一个共同基础,使药物研发更具包容性和参与性。

相似文献

1
Open Source Code Contributions to Global Health: The Case of Antimalarial Drug Discovery.开源代码对全球健康的贡献:以抗疟药物研发为例。
ACS Med Chem Lett. 2024 Aug 1;15(9):1645-1650. doi: 10.1021/acsmedchemlett.4c00131. eCollection 2024 Sep 12.

本文引用的文献

1
The 2023 WHO World malaria report.《2023年世界卫生组织疟疾报告》
Lancet Microbe. 2024 Mar;5(3):e214. doi: 10.1016/S2666-5247(24)00016-8. Epub 2024 Jan 31.
2
Building open-source AI.构建开源人工智能。
Nat Comput Sci. 2023 Nov;3(11):908-911. doi: 10.1038/s43588-023-00540-0.
7
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
10
REINVENT 2.0: An AI Tool for De Novo Drug Design.REINVENT 2.0:一种用于从头设计药物的人工智能工具。
J Chem Inf Model. 2020 Dec 28;60(12):5918-5922. doi: 10.1021/acs.jcim.0c00915. Epub 2020 Oct 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验