Isaacs James T, Almeter Philip J, Henderson Bradley S, Hunter Aaron N, Platt Thomas L, Lodder Robert A
Department of Pharmacy Services, University of Kentucky, Lexington, KY 40536.
Pharmacy Practice & Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40506.
Contact Context. 2023;2023.
This assessment of subcluster detection in analytical chemistry offers a nonparametric approach to address the challenges of identifying specific substances (molecules or mixtures) in large hyperspaces. The paper introduces the concept of subcluster detection, which involves identifying specific substances within a larger cluster of similar samples. The BEST (Bootstrap Error-adjusted Single-sample Technique) metric is introduced as a more accurate and precise method for discriminating between similar samples compared to the MD (Mahalanobis distance) metric. The paper also discusses the challenges of subcluster detection in large hyperspaces, such as the curse of dimensionality and the need for nonparametric methods. The proposed nonparametric approach involves using a kernel density estimator to determine the probability density function of the data and then using a quantile-quantile algorithm to identify subclusters. The paper provides examples of how this approach can be used to analyze small changes in the near-infrared spectra of drug samples and identifies the benefits of this approach, such as improved accuracy and precision.
这篇关于分析化学中子簇检测的评估文章提供了一种非参数方法,以应对在大型超空间中识别特定物质(分子或混合物)的挑战。本文介绍了子簇检测的概念,即涉及在大量相似样本的簇中识别特定物质。与马氏距离(MD)度量相比,引入了BEST(自举重采样误差调整单样本技术)度量作为一种更准确、更精确的方法来区分相似样本。本文还讨论了在大型超空间中进行子簇检测的挑战,例如维度诅咒以及对非参数方法的需求。所提出的非参数方法涉及使用核密度估计器来确定数据的概率密度函数,然后使用分位数 - 分位数算法来识别子簇。本文提供了该方法如何用于分析药物样本近红外光谱中的微小变化的示例,并指出了这种方法的优点,如提高了准确性和精度。