Suppr超能文献

基于深度学习的左侧乳腺癌容积调强弧形治疗剂量-体积直方图预测。

Deep learning-based prediction of the dose-volume histograms for volumetric modulated arc therapy of left-sided breast cancer.

机构信息

Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.

Center of Oncology, Kuopio University Hospital, Kuopio, Finland.

出版信息

Med Phys. 2024 Nov;51(11):7986-7997. doi: 10.1002/mp.17410. Epub 2024 Sep 18.

Abstract

BACKGROUND

The advancements in artificial intelligence and computational power have made deep learning an attractive tool for radiotherapy treatment planning. Deep learning has the potential to significantly simplify the trial-and-error process involved in inverse planning required by modern treatment techniques such as volumetric modulated arc therapy (VMAT). In this study, we explore the ability of deep learning to predict organ-at-risk (OAR) dose-volume histograms (DVHs) of left-sided breast cancer patients undergoing VMAT treatment based solely on their anatomical characteristics. The predicted DVHs could be used to derive patient-specific dose constraints and dose objectives, streamlining the treatment planning process, standardizing the quality of the plans, and personalizing the treatment planning.

PURPOSE

This study aimed to develop a deep learning-based framework for the prediction of organ-specific dose-volume histograms (DVH) based on structures delineated for left-sided breast cancer treatment.

METHODS

We used a dataset of 249 left-sided breast cancer patients treated with tangential VMAT fields. We extracted delineated structures and dose distributions for each patient and derived slice-by-slice DVHs for planning target volume (PTV) and organs-at-risk. The patients were divided into training (70%, n = 174), validation (10%, n = 24), and test (20%, n = 51) sets. Collected data were used to train a deep learning model for the prediction of the DVHs based on the delineated structures. The developed deep learning model comprised a modified DenseNet architecture followed by a recurrent neural network.

RESULTS

In the independent test set (n = 51), the point-wise differences in the slice-by-slice DVHs between the clinical and predicted DVHs were small; the mean squared errors were 3.53, 1.58, 2.28, 3.37, and 1.44 [×10] for PTV, heart, ipsilateral lung, contralateral lung, and contralateral breast, respectively. With the derived cumulative DVHs, the mean absolute difference ± standard deviation of mean doses between the clinical and the predicted DVH were 0.08 ± 0.04 Gy, 0.24 ± 0.22 Gy, 0.73 ± 0.46 Gy, 0.07 ± 0.06 Gy, and 0.14 ± 0.14 Gy for PTV, heart, ipsilateral lung, contralateral lung, and contralateral breast, respectively.

CONCLUSIONS

The deep learning-based approach enabled automatic and reliable prediction of the DVH based on delineated structures. The predicted DVHs could potentially serve as patient-specific clinical goals used to aid treatment planning and avoid suboptimal plans or to derive optimization objectives and constraints for automated treatment planning.

摘要

背景

人工智能和计算能力的进步使得深度学习成为放射治疗计划的一种有吸引力的工具。深度学习有可能极大地简化现代治疗技术(如容积旋转调强弧形治疗(VMAT))所需要的逆向计划中的反复试验过程。在这项研究中,我们探讨了深度学习仅根据解剖特征预测接受 VMAT 治疗的左侧乳腺癌患者的危及器官(OAR)剂量-体积直方图(DVH)的能力。预测的 DVH 可用于推导出患者特异性剂量限制和剂量目标,从而简化治疗计划过程,标准化计划质量,并实现治疗计划的个性化。

目的

本研究旨在开发一种基于左侧乳腺癌治疗勾画结构的深度学习框架,用于预测器官特异性剂量-体积直方图(DVH)。

方法

我们使用了 249 例接受切线 VMAT 治疗的左侧乳腺癌患者的数据集。我们提取了每个患者的勾画结构和剂量分布,并为计划靶区(PTV)和危及器官推导出逐片 DVH。患者被分为训练集(70%,n=174)、验证集(10%,n=24)和测试集(20%,n=51)。收集的数据用于训练基于勾画结构预测 DVH 的深度学习模型。所开发的深度学习模型由经过修改的 DenseNet 架构和递归神经网络组成。

结果

在独立的测试集(n=51)中,临床和预测的 DVH 之间的逐片 DVH 的点差较小;PTV、心脏、同侧肺、对侧肺和对侧乳腺的均方误差分别为 3.53、1.58、2.28、3.37 和 1.44[×10]。使用推导出的累积 DVH,临床和预测的 DVH 之间的平均剂量的绝对差异±标准偏差分别为 0.08±0.04Gy、0.24±0.22Gy、0.73±0.46Gy、0.07±0.06Gy 和 0.14±0.14Gy,用于 PTV、心脏、同侧肺、对侧肺和对侧乳腺。

结论

基于勾画结构的深度学习方法能够实现基于勾画结构的自动和可靠的 DVH 预测。预测的 DVH 可能可以作为患者特异性的临床目标,用于辅助治疗计划,避免不优的计划,或为自动化治疗计划推导出优化目标和限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验