Suppr超能文献

深度学习方法预测乳腺癌患者特定剂量分布。

Deep learning method for prediction of patient-specific dose distribution in breast cancer.

机构信息

Department of Radiation Oncology, Proton Therapy Center, National Cancer Center, 323, Ilsan-ro, Ilsandong-guGyeonggi-do, Goyang-si, 10408, South Korea.

Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.

出版信息

Radiat Oncol. 2021 Aug 17;16(1):154. doi: 10.1186/s13014-021-01864-9.

Abstract

BACKGROUND

Patient-specific dose prediction improves the efficiency and quality of radiation treatment planning and reduces the time required to find the optimal plan. In this study, a patient-specific dose prediction model was developed for a left-sided breast clinical case using deep learning, and its performance was compared with that of conventional knowledge-based planning using RapidPlan™.

METHODS

Patient-specific dose prediction was performed using a contour image of the planning target volume (PTV) and organs at risk (OARs) with a U-net-based modified dose prediction neural network. A database of 50 volumetric modulated arc therapy (VMAT) plans for left-sided breast cancer patients was utilized to produce training and validation datasets. The dose prediction deep neural network (DpNet) feature weights of the previously learned convolution layers were applied to the test on a cohort of 10 test sets. With the same patient data set, dose prediction was performed for the 10 test sets after training in RapidPlan. The 3D dose distribution, absolute dose difference error, dose-volume histogram, 2D gamma index, and iso-dose dice similarity coefficient were used for quantitative evaluation of the dose prediction.

RESULTS

The mean absolute error (MAE) and one standard deviation (SD) between the clinical and deep learning dose prediction models were 0.02 ± 0.04%, 0.01 ± 0.83%, 0.16 ± 0.82%, 0.52 ± 0.97, - 0.88 ± 1.83%, - 1.16 ± 2.58%, and - 0.97 ± 1.73% for D, D in the PTV, and the OARs of the body, left breast, heart, left lung, and right lung, respectively, and those measured between the clinical and RapidPlan dose prediction models were 0.02 ± 0.14%, 0.87 ± 0.63%, - 0.29 ± 0.98%, 1.30 ± 0.86%, - 0.32 ± 1.10%, 0.12 ± 2.13%, and - 1.74 ± 1.79, respectively.

CONCLUSIONS

In this study, a deep learning method for dose prediction was developed and was demonstrated to accurately predict patient-specific doses for left-sided breast cancer. Using the deep learning framework, the efficiency and accuracy of the dose prediction were compared to those of RapidPlan. The doses predicted by deep learning were superior to the results of the RapidPlan-generated VMAT plan.

摘要

背景

患者特异性剂量预测可提高放射治疗计划的效率和质量,并减少寻找最佳计划所需的时间。在这项研究中,我们使用深度学习为左侧乳腺癌临床病例开发了患者特异性剂量预测模型,并将其性能与使用 RapidPlan™的传统基于知识的计划进行了比较。

方法

使用基于 U-net 的改良剂量预测神经网络对计划靶区(PTV)和危及器官(OAR)的轮廓图像进行患者特异性剂量预测。利用 50 例左侧乳腺癌容积调强弧形治疗(VMAT)计划的数据库生成训练和验证数据集。先前学习的卷积层的 DpNet 特征权重应用于对 10 个测试集的测试。对于同一患者数据集,在 RapidPlan 中进行训练后,对 10 个测试集进行剂量预测。使用三维剂量分布、绝对剂量差异误差、剂量-体积直方图、二维伽马指数和等剂量骰子相似系数对剂量预测进行定量评估。

结果

临床和深度学习剂量预测模型之间的平均绝对误差(MAE)和一个标准差(SD)分别为 0.02±0.04%、0.01±0.83%、0.16±0.82%、0.52±0.97%、-0.88±1.83%、-1.16±2.58%和-0.97±1.73%,分别为 D、PTV 中的 D 和身体、左乳、心脏、左肺和右肺的 OAR。临床和 RapidPlan 剂量预测模型之间的测量值分别为 0.02±0.14%、0.87±0.63%、-0.29±0.98%、1.30±0.86%、-0.32±1.10%、0.12±2.13%和-1.74±1.79%。

结论

在这项研究中,我们开发了一种用于剂量预测的深度学习方法,并证明该方法能够准确预测左侧乳腺癌的患者特异性剂量。使用深度学习框架,比较了剂量预测的效率和准确性与 RapidPlan 的结果。深度学习预测的剂量优于 RapidPlan 生成的 VMAT 计划的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7089/8369791/e31e756f6ece/13014_2021_1864_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验