Suppr超能文献

流动反应器中共价有机框架的连续合成与处理

Continuous Synthesis and Processing of Covalent Organic Frameworks in a Flow Reactor.

作者信息

Khalil Safiya, Alazmi Abdullah, Gao Guanhui, Martínez-Jiménez Cecilia, Saxena Ravindra, Chen Yu, Jiang Shu-Yan, Li Jianhua, Alhashim Salma, Senftle Thomas P, Martí Angel A, Verduzco Rafael

机构信息

Department of Chemical and Biomolecular Engineering, Rice University, MS-362, 6100 Main Street, Houston, Texas 77005, United States.

Department of Materials Science and NanoEngineering, Rice University, MS-364, 6100 Main Street, Houston, Texas 77005, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 18. doi: 10.1021/acsami.4c09577.

Abstract

Covalent organic frameworks (COFs) are typically prepared in the form of insoluble microcrystalline powders using batch solvothermal reactions that are energy-intensive and require long annealing periods (>120 °C, >72 h). Thus, their wide-scale adoption in a variety of potential applications is impeded by complications related to synthesis, upscaling, and processing, which also compromise their commercialization. Here we report a strategy to address both the need for scalable synthesis and processing approaches through the continuous, accelerated synthesis, and processing of imine- and hydrazone-linked COFs using a flow microreactor. The flow microreactor is capable of unprecedented COF productivities, up to 61,111 kg m day, and provides control over key stages of COF formation, including nanoparticle growth, self-assembly, and precipitation. Additionally, the technique successfully yields highly crystalline and porous COFs in versatile macroscopic structures such as monoliths, membranes, prints, and packed beds. We also show that a COF synthesized using the flow microreactor acts as an excellent photocatalyst for the photocatalytic degradation of perfluorooctanoic acid (PFOA) outperforming the degradation efficiency of its batch analogue and other classical photocatalysts such as titanium dioxide (TiO).

摘要

共价有机框架材料(COFs)通常采用间歇式溶剂热反应制备成不溶性微晶粉末,这种反应能耗高,需要较长的退火时间(>120°C,>72小时)。因此,与合成、放大生产和加工相关的复杂性阻碍了它们在各种潜在应用中的广泛采用,这也影响了它们的商业化。在此,我们报告一种策略,通过使用流动微反应器连续、加速合成和加工亚胺连接和腙连接的COFs,来满足可扩展合成和加工方法的需求。该流动微反应器能够实现前所未有的COF生产率,高达61,111 kg m⁻² day⁻¹,并能控制COF形成的关键阶段,包括纳米颗粒生长、自组装和沉淀。此外,该技术成功地制备出具有高结晶度和多孔性的COFs,呈现出多种宏观结构,如整体材料、膜、印记和填充床。我们还表明,使用流动微反应器合成的COF作为光催化剂,在光催化降解全氟辛酸(PFOA)方面表现出色,其降解效率优于批次合成的类似物和其他传统光催化剂,如二氧化钛(TiO₂)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验