Fan Weidong, Wang Yutong, Kang Zixi, Sun Daofeng
State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.
Acc Chem Res. 2025 May 15. doi: 10.1021/acs.accounts.5c00070.
ConspectusAdsorptive and membrane separations are recognized as highly energy-efficient technologies, critically dependent on the properties of adsorbent and membrane materials. Crystalline porous materials (CPMs), such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), metal-organic cages (MOCs), and hydrogen-bonded organic frameworks (HOFs), have emerged as exceptional candidates for high-performance adsorbents and membranes due to their intrinsic structural tunability. Their orderly pore structure, high porosity, and large surface facilitate gas storage and separation processes. Furthermore, modifying the inner surface, controlling the pore size, and regulating the framework flexibility can significantly enhance CPMs' adsorption capacity and separation selectivity. Therefore, the precise structure regulation of CPMs is the key to optimizing gas separation and purification.Reticular chemistry is the use of strong chemical bonds to connect discrete molecular structures (molecules or molecular clusters) to create extended structures, such as CPMs. It allows precise atomic-level control and offers a method for regulating the structures of CPMs, enabling tailored pore environments that enhance selectivity for target separations. This approach is crucial to designing effective gas separation materials. For example, by functionalizing organic ligands, regulating metal ions, and modifying secondary building units, the pore size, porosity, and functionality of CPMs can be finely controlled while keeping the framework topology unchanged, thereby optimizing the gas separation performance.In this Account, we present an overview of our group's research efforts on optimizing gas separation by fine-tuning CPM adsorbents and membranes. Using reticular chemistry, we have developed strategies such as multiple cooperative regulation, adaptive pore control, pore environment engineering, preprocessed monomer interfacial polymerization, and precursor solution processing to create highly selective CPM adsorbents and membranes. Additionally, we elucidate the underlying mechanism of multiple hydrogen bonding and dipole-dipole interactions between CPMs and hydrocarbon molecules. By precise structural regulation, we further optimize the gas separation performance and broaden CPMs' applications. Finally, we discuss the challenges and future directions for CPM adsorbents and membranes, including material design, synthesis, stability, performance, and the structure-activity relationship. We also propose a membrane-adsorptive separation coupling technology as a potential solution for achieving high-purity gas separation. By utilizing CPM-based adsorbents and membranes, we aim to establish an energy-intensive and environmentally friendly pathway for the separation of low-carbon hydrocarbons, hydrogen, and natural gas, providing a sustainable alternative to conventional high-energy gas separation processes.
综述 吸附和膜分离被认为是高能效技术,严重依赖于吸附剂和膜材料的性能。晶体多孔材料(CPMs),如金属有机框架(MOFs)、共价有机框架(COFs)、金属有机笼(MOCs)和氢键有机框架(HOFs),由于其固有的结构可调性,已成为高性能吸附剂和膜的杰出候选材料。它们有序的孔结构、高孔隙率和大比表面积有利于气体储存和分离过程。此外,修饰内表面、控制孔径和调节框架柔韧性可以显著提高CPMs的吸附容量和分离选择性。因此,CPMs的精确结构调控是优化气体分离和净化的关键。 网状化学是利用强化学键连接离散的分子结构(分子或分子簇)以创建扩展结构,如CPMs。它允许精确的原子级控制,并提供了一种调节CPMs结构的方法,能够实现定制的孔环境,从而提高对目标分离的选择性。这种方法对于设计有效的气体分离材料至关重要。例如,通过对有机配体进行功能化、调节金属离子和修饰二级建筑单元,可以在保持框架拓扑结构不变的同时,精细地控制CPMs的孔径、孔隙率和功能,从而优化气体分离性能。 在本综述中,我们概述了我们团队通过微调CPM吸附剂和膜来优化气体分离的研究工作。利用网状化学,我们开发了多种协同调控、自适应孔控制、孔环境工程、预处理单体界面聚合和前驱体溶液处理等策略,以制备高选择性的CPM吸附剂和膜。此外,我们阐明了CPMs与烃分子之间多重氢键和偶极-偶极相互作用的潜在机制。通过精确的结构调控,我们进一步优化了气体分离性能,拓宽了CPMs的应用范围。最后,我们讨论了CPM吸附剂和膜面临的挑战和未来发展方向,包括材料设计、合成、稳定性、性能以及结构-活性关系。我们还提出了膜-吸附分离耦合技术,作为实现高纯度气体分离的潜在解决方案。通过利用基于CPM的吸附剂和膜,我们旨在建立一条低能耗、环境友好的途径,用于分离低碳烃、氢气和天然气,为传统的高能耗气体分离过程提供可持续的替代方案。
Acc Chem Res. 2025-5-15
Acc Chem Res. 2025-7-1
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2016-10-13
Cochrane Database Syst Rev. 2017-12-22
J Chem Theory Comput. 2025-6-24