Schlicke Hendrik, Maletz Roman, Dornack Christina, Fery Andreas
Leibniz Institute for Polymer Research Dresden, Hohe Straße 6, 01069, Dresden, Germany.
Faculty of Environmental Sciences, Institute of Waste Management and Circular Economy, TUD Dresden University of Technology, Pratzschwitzer Straße 15, 01796, Pirna, Germany.
Small. 2024 Nov;20(48):e2403502. doi: 10.1002/smll.202403502. Epub 2024 Sep 18.
Current challenges in environmental science, medicine, food chemistry as well as the emerging use of artificial intelligence for solving problems in these fields require distributed, local sensing. Such ubiquitous sensing requires components with 1) high sensitivity, 2) power efficiency, 3) miniaturizability, and 4) the ability to directly interface with electronic circuitry, i.e., electronic readout of sensing signals. Over the recent years, several nanoparticle-based approaches have found their way into this field and have demonstrated high performance. However, challenges remain, such as the toxicity of many of today's narrow bandgap semiconductors for NIR detection and the high energy consumption as well as low selectivity of state-of-the-art commercialized gas sensors. With their unique light-matter interaction and ink-based fabrication schemes, plasmonic nanostructures provide potential technological solutions to these challenges, leading also to better environmental performance. In this perspective recent approaches of using plasmonic nanoparticles are discussed for the fabrication of NIR photodetectors and light-activated, energy-efficient gas sensing devices. In addition, new strategies implying computational approaches are pointed out for miniaturizable spectrometers, exploiting the wide spectral tunability of plasmonic nanocomposites, and for selective gas sensors, utilizing dynamic light activation. The benefits of colloidal approaches for device fabrication are discussed with regard to technological advantages and environmental aspects, which are barely considered so far.
环境科学、医学、食品化学领域当前面临的挑战,以及人工智能在解决这些领域问题中的新兴应用,都需要分布式的局部传感。这种无处不在的传感需要具备以下特性的组件:1)高灵敏度,2)功率效率,3)可小型化,4)能够直接与电子电路接口,即对传感信号进行电子读出。近年来,几种基于纳米颗粒的方法已进入该领域并展现出高性能。然而,挑战依然存在,比如当今许多用于近红外检测的窄带隙半导体具有毒性,以及最先进的商业化气体传感器能耗高且选择性低。等离子体纳米结构凭借其独特的光与物质相互作用以及基于墨水的制造方案,为这些挑战提供了潜在的技术解决方案,同时也带来了更好的环境性能。从这个角度出发,本文讨论了利用等离子体纳米颗粒制造近红外光电探测器和光激活、节能型气体传感装置的最新方法。此外,还指出了新的策略,即采用计算方法来制造可小型化光谱仪,利用等离子体纳米复合材料的宽光谱可调性;以及制造选择性气体传感器,利用动态光激活。本文还讨论了胶体方法在器件制造方面的优势,涉及技术优势和环境方面,而这些方面迄今为止几乎未被考虑。