Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden.
Acc Chem Res. 2023 Jul 4;56(13):1850-1861. doi: 10.1021/acs.accounts.3c00182. Epub 2023 Jun 23.
ConspectusSensors are ubiquitous, and their importance is only going to increase across many areas of modern technology. In this respect, hydrogen gas (H) sensors are no exception since they allow mitigation of the inherent safety risks associated with mixtures of H and air. The deployment of H technologies is rapidly accelerating in emerging energy, transport, and green steel-making sectors, where not only safety but also process monitoring sensors are in high demand. To meet this demand, cost-effective and scalable routes for mass production of sensing materials are required. Here, the state-of-the-art often resorts to processes derived from the microelectronics industry where surface-based micro- and nanofabrication are the methods of choice and where (H) sensor manufacturing is no exception.In this Account, we discuss how our recent efforts to develop sensors based on plasmonic plastics may complement the current state-of-the-art. We explore a new H sensor paradigm, established through a series of recent publications, that combines (i) the plasmonic optical H detection principle and (ii) bulk-processed nanocomposite materials. In particular, plasmonic plastic nanocomposite sensing materials are described that comprise plasmonic H-sensitive colloidally synthesized nanoparticles dispersed in a polymer matrix and enable the additive manufacturing of H sensors in a cost-effective and scalable way. We first discuss the concept of plasmonic plastic nanocomposite materials for the additive manufacturing of an active plasmonic sensing material on the basis of the three key components that require individual and concerted optimization: (i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizer molecules on the nanoparticle surface from colloidal synthesis, and (iii) the polymer matrix. We then introduce the working principle of plasmonic H detection, which relies on the selective absorption of H species into hydride-forming metal nanoparticles that, in turn, induces distinct changes in their optical plasmonic signature in proportion to the H concentration in the local atmosphere. Subsequently, we assess the roles of the key components of a plasmonic plastic for H sensing, where we have established that (i) alloying Pd with Au and Cu eliminates hysteresis and introduces intrinsic deactivation resistance at ambient conditions, (ii) surfactant/stabilizer molecules can significantly accelerate and decelerate H sorption and thus sensor response, and (iii) polymer coatings accelerate sensor response, reduce the limit of detection (LoD), and enable molecular filtering for sensor operation in chemically challenging environments. Based on these insights, we discuss the rational development and detailed characterization of bulk-processed plasmonic plastics based on glassy and fluorinated matrix polymers and on tailored flow-chemistry-based synthesis of Pd and PdAu alloy colloidal nanoparticles with optimized stabilizer molecules. In their champion implementation, they enable highly stable H sensors with response times in the 2 s range and an LoD of few 10 ppm of H. To put plasmonic plastics in a wider perspective, we also report their implementation using different polymer matrix materials that can be used for 3D printing and (an)isotropic Au nanoparticles that enable the manufacturing of macroscopic plasmonic objects with, if required, dichroic optical properties and in amounts that can be readily upscaled. We advertise that melt processing of plasmonic plastic nanocomposites is a viable route toward the realization of plasmonic objects and sensors, produced by scalable colloidal synthesis and additive manufacturing techniques.
概述传感器无处不在,它们在现代技术的许多领域的重要性只会越来越大。在这方面,氢气(H)传感器也不例外,因为它们允许减轻与 H 和空气混合物相关的固有安全风险。H 技术的应用在新兴能源、交通和绿色钢铁制造等领域正在迅速加速,这些领域不仅需要安全,还需要过程监测传感器。为了满足这一需求,需要具有成本效益和可扩展的大规模生产传感材料的途径。在这里,最先进的技术通常依赖于微电子工业衍生的工艺,其中基于表面的微纳加工是首选方法,而(H)传感器制造也不例外。在本报告中,我们讨论了我们最近开发基于等离子体塑料的传感器的努力如何补充当前的最新技术。我们探索了一种新的 H 传感器范例,该范例是通过一系列最近的出版物建立的,该范例结合了(i)等离子体光学 H 检测原理和(ii)批量处理的纳米复合材料。特别是,描述了包含等离子体敏感胶体合成纳米粒子分散在聚合物基质中的 H 敏感等离子体塑料纳米复合材料,并且能够以具有成本效益和可扩展的方式制造 H 传感器。我们首先讨论了基于胶体合成的等离子体敏感胶体合成纳米粒子的主动等离子体传感材料的基于等离子体塑料纳米复合材料的概念,该材料需要单独和协同优化三个关键组件:(i)等离子体传感金属纳米粒子,(ii)胶体合成中纳米粒子表面上的表面活性剂/稳定剂分子,以及(iii)聚合物基质。然后,我们介绍了等离子体 H 检测的工作原理,该原理依赖于 H 物种选择性地吸收到形成氢化物的金属纳米粒子中,反过来,这会导致其光学等离子体特征发生明显变化,与局部大气中的 H 浓度成比例。随后,我们评估了等离子体塑料中 H 传感的关键组件的作用,我们已经确定(i)将 Pd 与 Au 和 Cu 合金化可以消除滞后并在环境条件下引入固有失活抗性,(ii)表面活性剂/稳定剂分子可以显著加速和减速 H 吸附,从而加速传感器响应,以及(iii)聚合物涂层可以加速传感器响应,降低检测限(LoD),并为在具有挑战性的化学环境中运行的传感器实现分子过滤。基于这些见解,我们讨论了基于玻璃态和氟化基质聚合物以及基于定制流动化学的 Pd 和 PdAu 合金胶体纳米粒子的批量处理等离子体塑料的合理开发和详细表征,该纳米粒子具有优化的稳定剂分子。在它们的冠军实现中,它们能够实现具有 2 s 范围内的响应时间和低至 ppm 级的 H 的 LoD 的高度稳定的 H 传感器。为了更广泛地介绍等离子体塑料,我们还报告了它们在使用不同聚合物基质材料的情况下的实施情况,这些材料可用于 3D 打印和(各向同性)Au 纳米粒子的使用,这些纳米粒子可用于制造具有如果需要,具有二向色性光学特性的宏观等离子体物体,并且可以大量生产,易于扩展。我们声称,等离子体塑料纳米复合材料的熔融加工是实现等离子体物体和传感器的可行途径,这些物体和传感器是通过可扩展的胶体合成和添加剂制造技术制造的。