Pang Yida, Li Qian, Wang Jiale, Wang Songyun, Sharma Amit, Xu Yuling, Hu Haoyuan, Li Junrong, Liu Shuang, Sun Yao
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
Department of Cardiology, Renmin Hospital of Wuhan University, Cardiac Autonomic Nervous System Research Center of Wuhan Univesity, Cardiovascular Research Institute, Wuhan University, Wuhan, 430072, China.
Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415802. doi: 10.1002/anie.202415802. Epub 2024 Oct 31.
Ventricular arrhythmias (VAs) triggered by myocardial infarction (MI) are the leading cause of sudden cardiac mortality worldwide. Current therapeutic strategies for managing MI-induced VAs, such as left stellate ganglion resection and ablation, are suboptimal, highlighting the need to explore safer and more effective intervention strategies. Herein, we rationally designed two supramolecular sonosensitizers RuA and RuB, engineered through acceptor modification to generate moderate reactive oxygen species (ROS) to modulate VAs. Both RuA and RuB demonstrated high ultrasound (US)-activated ROS production efficiency, with singlet oxygen (O) quantum yield (Φ) of 0.70 and 0.88, respectively, surpassing ligand IR1105 and the conventional sonosensitizer ICG (Φ=0.40). In vitro, RuB, at a modest concentration and under US intensity notably boosts pro-survival autophagy in microglia BV2 cell. To improve in vivo stability and biocompatibility, RuB was further encapsulated into DSPE-PEG to prepare RuB nanoparticles (RuB NPs). In vivo studies after microinjection of RuB NPs into the paraventricular nucleus (PVN) and subsequent US exposure, demonstrated that RuB NPs-mediated US modulation effectively suppresses sympathetic nervous activity (SNA) and inflammatory responses, thereby preventing VAs. Importantly, no tissue injury was observed post RuB NPs-mediated US modulation. This work pioneers the design of long-wave emission supramolecular sonosensitizers, offering new insights into regulating cardiovascular diseases.
心肌梗死(MI)引发的室性心律失常(VAs)是全球心脏性猝死的主要原因。目前用于治疗MI诱发的VAs的策略,如左星状神经节切除术和消融术,效果并不理想,这凸显了探索更安全、更有效干预策略的必要性。在此,我们合理设计了两种超分子声敏剂RuA和RuB,通过受体修饰进行工程改造,以产生适度的活性氧(ROS)来调节VAs。RuA和RuB均表现出高效的超声(US)激活ROS生成效率,单线态氧(O)量子产率(Φ)分别为0.70和0.88,超过配体IR1105和传统声敏剂ICG(Φ = 0.40)。在体外,适度浓度的RuB在US强度下能显著促进小胶质细胞BV2细胞的促生存自噬。为了提高体内稳定性和生物相容性,RuB进一步被封装到DSPE-PEG中制备RuB纳米颗粒(RuB NPs)。在将RuB NPs微量注射到室旁核(PVN)并随后进行US照射后的体内研究表明,RuB NPs介导的US调节有效地抑制了交感神经活动(SNA)和炎症反应,从而预防了VAs。重要的是,RuB NPs介导的US调节后未观察到组织损伤。这项工作开创了长波发射超分子声敏剂的设计,为调节心血管疾病提供了新的见解。