文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nanosensitizer-assisted sonodynamic therapy for breast cancer.

作者信息

Yu Jing, Hu Jun-Rui, Tian Yi, Lei Yu-Meng, Hu Hai-Man, Lei Bing-Song, Zhang Ge, Sun Yao, Ye Hua-Rong

机构信息

Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.

Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

J Nanobiotechnology. 2025 Apr 7;23(1):281. doi: 10.1186/s12951-025-03311-3.


DOI:10.1186/s12951-025-03311-3
PMID:40197318
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11978163/
Abstract

Breast cancer is the most commonly diagnosed cancer worldwide. Despite advancements in therapeutic modalities, its prognosis remains poor owing to complex clinical, pathological, and molecular characteristics. Sonodynamic therapy (SDT) is a promising approach for tumor elimination, using sonosensitizers that preferentially accumulate in tumor tissues and are activated by low-intensity ultrasound to produce reactive oxygen species. However, the clinical translation of SDT faces challenges, including the limited efficiency of sonosensitizers and resistance posed by the tumor microenvironment. The emergence of nanomedicine offers innovative strategies to address these obstacles. This review discusses strategies for enhancing the efficacy of SDT using sonosensitizers, including rational structural modifications, improved tumor-targeted enrichment, tumor microenvironment remodeling, and imaging-guided therapy. Additionally, SDT-based multimodal therapies, such as sono-chemotherapy, sono-immunotherapy, and sono-photodynamic therapy, and their potential applications in breast cancer treatment are summarized. The underlying mechanisms of SDT in breast cancer are briefly outlined. Finally, this review highlights current challenges and prospects for the clinical translation of SDT, providing insights into future advancements that may improve therapeutic outcomes for breast cancer.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/4e6389855ca3/12951_2025_3311_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/6aee6589793c/12951_2025_3311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/cd4afeea34cd/12951_2025_3311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/4330000da301/12951_2025_3311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/0aafde174c22/12951_2025_3311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/cfebf1e1e9b4/12951_2025_3311_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/a8b50bd01760/12951_2025_3311_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/dffbaf56b3e5/12951_2025_3311_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/96df90f0e48e/12951_2025_3311_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/3e871d9b9df7/12951_2025_3311_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/4e6389855ca3/12951_2025_3311_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/6aee6589793c/12951_2025_3311_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/cd4afeea34cd/12951_2025_3311_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/4330000da301/12951_2025_3311_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/0aafde174c22/12951_2025_3311_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/cfebf1e1e9b4/12951_2025_3311_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/a8b50bd01760/12951_2025_3311_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/dffbaf56b3e5/12951_2025_3311_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/96df90f0e48e/12951_2025_3311_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/3e871d9b9df7/12951_2025_3311_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf13/11978163/4e6389855ca3/12951_2025_3311_Fig10_HTML.jpg

相似文献

[1]
Nanosensitizer-assisted sonodynamic therapy for breast cancer.

J Nanobiotechnology. 2025-4-7

[2]
Sonodynamic and Acoustically Responsive Nanodrug Delivery System: Cancer Application.

Int J Nanomedicine. 2024

[3]
Metal-organic frameworks as candidates for tumor sonodynamic therapy: Designable structures for targeted multifunctional transformation.

Acta Biomater. 2024-6

[4]
Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies.

Biomed Mater. 2021-4-21

[5]
Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment.

Small. 2023-10

[6]
Ultrasound-Responsive Nanobubbles for Breast Cancer: Synergistic Sonodynamic, Chemotherapy, and Immune Activation through the cGAS-STING Pathway.

ACS Appl Mater Interfaces. 2025-4-2

[7]
Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments.

Small. 2023-3

[8]
Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy.

Small. 2024-11

[9]
Molecular Imaging-Guided Sonodynamic Therapy.

Bioconjug Chem. 2022-6-15

[10]
A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy.

Int J Mol Sci. 2023-7-26

引用本文的文献

[1]
Ultrasound-Responsive Drug Delivery System Based on Piezoelectric Catalytic Mechanisms.

J Funct Biomater. 2025-8-21

本文引用的文献

[1]
Polymer-based nanodrugs enhance sonodynamic therapy through epigenetic reprogramming of the immunosuppressive tumor microenvironment.

J Control Release. 2025-4-10

[2]
Ultrasound-activated erythrocyte membrane-camouflaged Pt (II) layered double hydroxide enhances PD-1 inhibitor efficacy in triple-negative breast cancer through cGAS-STING pathway-mediated immunogenic cell death.

Theranostics. 2025-1-2

[3]
Cell-membrane targeting sonodynamic therapy combination with FSP1 inhibition for ferroptosis-boosted immunotherapy.

Mater Today Bio. 2024-12-15

[4]
Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater. 2025-2

[5]
Biomimetic Diselenide-Sonosensitizer Nanoplatform for Enhanced Sonodynamic Therapy and In Situ Remodeling Immunosuppressive Microenvironment via Activating Innate and Adaptive Immunotherapy.

Adv Healthc Mater. 2025-3

[6]
Integrating oxygen-boosted sonodynamic therapy and ferroptosis engineered exosomes for effective cancer treatment.

Theranostics. 2025-1-1

[7]
Engineered microalgae for photo-sonodynamic synergistic therapy in breast cancer treatment.

Acta Biomater. 2025-1-24

[8]
Synergistic effects of doxorubicin loaded silk fibroin nanoparticles and Cu-TiO nanoparticles for local chemo-sonodynamic therapy against breast cancer.

Int J Biol Macromol. 2025-2

[9]
Ultrasound-Activated Precise Sono-Immunotherapy for Breast Cancer with Reduced Pulmonary Fibrosis.

Adv Sci (Weinh). 2025-2

[10]
A metal-phenolic nanotuner induces cancer pyroptosis for sono-immunotherapy.

Biomater Sci. 2025-1-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索