Brigham & Women's Hospital, Boston, Massachusetts.
ETH Zurich, Zurich, Switzerland.
JAMA Cardiol. 2024 Nov 1;9(11):1018-1028. doi: 10.1001/jamacardio.2024.2912.
Risk estimation is an integral part of cardiovascular care. Local recalibration of guideline-recommended models could address the limitations of existing tools.
To provide a machine learning (ML) approach to augment the performance of the American Heart Association's Predicting Risk of Cardiovascular Disease Events (AHA-PREVENT) equations when applied to a local population while preserving clinical interpretability.
DESIGN, SETTING, AND PARTICIPANTS: This cohort study used a New England-based electronic health record cohort of patients without prior atherosclerotic cardiovascular disease (ASCVD) who had the data necessary to calculate the AHA-PREVENT 10-year risk of developing ASCVD in the event period (2007-2016). Patients with prior ASCVD events, death prior to 2007, or age 79 years or older in 2007 were subsequently excluded. The final study population of 95 326 patients was split into 3 nonoverlapping subsets for training, testing, and validation. The AHA-PREVENT model was adapted to this local population using the open-source ML model (MLM) Extreme Gradient Boosting model (XGBoost) with minimal predictor variables, including age, sex, and AHA-PREVENT. The MLM was monotonically constrained to preserve known associations between risk factors and ASCVD risk. Along with sex, race and ethnicity data from the electronic health record were collected to validate the performance of ASCVD risk prediction in subgroups. Data were analyzed from August 2021 to February 2024.
Consistent with the AHA-PREVENT model, ASCVD events were defined as the first occurrence of either nonfatal myocardial infarction, coronary artery disease, ischemic stroke, or cardiovascular death. Cardiovascular death was coded via government registries. Discrimination, calibration, and risk reclassification were assessed using the Harrell C index, a modified Hosmer-Lemeshow goodness-of-fit test and calibration curves, and reclassification tables, respectively.
In the test set of 38 137 patients (mean [SD] age, 64.8 [6.9] years, 22 708 [59.5]% women and 15 429 [40.5%] men; 935 [2.5%] Asian, 2153 [5.6%] Black, 1414 [3.7%] Hispanic, 31 400 [82.3%] White, and 2235 [5.9%] other, including American Indian, multiple races, unspecified, and unrecorded, consolidated owing to small numbers), MLM-PREVENT had improved calibration (modified Hosmer-Lemeshow P > .05) compared to the AHA-PREVENT model across risk categories in the overall cohort (χ23 = 2.2; P = .53 vs χ23 > 16.3; P < .001) and sex subgroups (men: χ23 = 2.1; P = .55 vs χ23 > 16.3; P < .001; women: χ23 = 6.5; P = .09 vs. χ23 > 16.3; P < .001), while also surpassing a traditional recalibration approach. MLM-PREVENT maintained or improved AHA-PREVENT's calibration in Asian, Black, and White individuals. Both MLM-PREVENT and AHA-PREVENT performed equally well in discriminating risk (approximate ΔC index, ±0.01). Using a clinically significant 7.5% risk threshold, MLM-PREVENT reclassified a total of 11.5% of patients. We visualize the recalibration through MLM-PREVENT ASCVD risk charts that highlight preserved risk associations of the original AHA-PREVENT model.
The interpretable ML approach presented in this article enhanced the accuracy of the AHA-PREVENT model when applied to a local population while still preserving the risk associations found by the original model. This method has the potential to recalibrate other established risk tools and is implementable in electronic health record systems for improved cardiovascular risk assessment.
风险评估是心血管护理的一个组成部分。对指南推荐模型进行局部重新校准可以解决现有工具的局限性。
提供一种机器学习 (ML) 方法,在保留临床可解释性的同时,增强美国心脏协会预测心血管疾病事件风险 (AHA-PREVENT) 方程在本地人群中的性能。
设计、地点和参与者:本队列研究使用了基于新英格兰的电子健康记录队列,该队列的患者没有先前的动脉粥样硬化性心血管疾病 (ASCVD),并且在事件期间(2007-2016 年)有必要计算 AHA-PREVENT 的 10 年 ASCVD 发病风险。排除了有 ASCVD 事件、2007 年之前死亡或 2007 年时年龄在 79 岁或以上的患者。最终的研究人群为 95326 名患者,分为 3 个不重叠的子集进行训练、测试和验证。使用开源 ML 模型(极端梯度提升模型 [XGBoost])对 AHA-PREVENT 模型进行了调整,使用的最小预测变量包括年龄、性别和 AHA-PREVENT。MLM 受到单调约束,以保留风险因素与 ASCVD 风险之间的已知关联。同时,从电子健康记录中收集了性别、种族和民族数据,以验证亚组中 ASCVD 风险预测的性能。数据分析时间为 2021 年 8 月至 2024 年 2 月。
与 AHA-PREVENT 模型一致,ASCVD 事件定义为首次发生非致命性心肌梗死、冠状动脉疾病、缺血性卒中和心血管死亡之一。通过政府登记处对心血管死亡进行编码。使用 Harrell C 指数、改良 Hosmer-Lemeshow 拟合优度检验和校准曲线以及重新分类表分别评估区分度、校准和风险再分类。
在 38137 名患者的测试集中(平均[标准差]年龄为 64.8[6.9]岁,22708[59.5%]为女性和 15429[40.5%]为男性;935[2.5%]为亚裔,2153[5.6%]为黑人,1414[3.7%]为西班牙裔,31400[82.3%]为白人,2235[5.9%]为其他种族,包括美洲印第安人、多种族、未指定和未记录,由于数量较少而合并),与 AHA-PREVENT 模型相比,MLM-PREVENT 在整个队列(χ23=2.2;P>.05)和性别亚组(男性:χ23=2.1;P=.55 与 χ23>16.3;P<.001;女性:χ23=6.5;P=.09 与 χ23>16.3;P<.001)中,在所有风险类别中均具有改善的校准(改良 Hosmer-Lemeshow P>.05),并且在亚裔、黑人和白人个体中也保持或提高了 AHA-PREVENT 的校准。MLM-PREVENT 和 AHA-PREVENT 在区分风险方面表现相当(近似ΔC 指数,±0.01)。使用具有临床意义的 7.5%风险阈值,MLM-PREVENT 重新分类了总共 11.5%的患者。我们通过 MLM-PREVENT ASCVD 风险图表可视化重新校准,该图表突出显示了原始 AHA-PREVENT 模型的风险关联。
本文提出的可解释 ML 方法在应用于本地人群时增强了 AHA-PREVENT 模型的准确性,同时仍保留了原始模型发现的风险关联。这种方法有可能重新校准其他已建立的风险工具,并可在电子健康记录系统中实施,以改善心血管风险评估。