Anand Nirmal, Ghosh Dipon Kumar, Abbes Alaeddine, Kundu Mrinmoy, Rahman Md Afjalur, Jenson Christy Giji, Morandotti Roberto, Baten Md Zunaid, Sadaf Sharif Md
Centre Energie, Matériaux et Télécommunications, Institut national de la recherche scientifique (INRS-EMT), Varennes, Québec J3X 1P7, Canada.
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology (BUET), West Palashi, Dhaka 1205, Bangladesh.
ACS Nano. 2024 Oct 1;18(39):26882-26890. doi: 10.1021/acsnano.4c08224. Epub 2024 Sep 18.
Ultra-dense (>4,000 pixels per inch) and highly stable full-color III-nitride nanoscale pixels are crucial for near-eye display technologies like virtual and augmented-reality glasses. In this context, InGaN-based long wavelength green microscale light-emitting diodes face major bottlenecks, such as low efficiency and inadequate wavelength stability. These challenges are associated with the presence of both nonradiative surface defects and the strain induced quantum-confined Stark effect. Herein, we report nanoscale pixelation of green InGaN/GaN LEDs incorporating strain-engineered ultra-dense nanowire (NW) arrays, corresponding to ∼36,000 pixels per inch. The NW pixel arrays exhibit a stable peak wavelength emission at ∼500 nm for over 3 orders of magnitude of injection current densities (from ∼4 A/cm to ∼1 kA/cm). The observed wavelength stability enhancement (a reduced blue-shift of just ∼4 nm) directly results from the suppressed built-in electric field achieved by strain relaxation of the axial multi quantum wells in the NWs. Finite difference time domain simulations show that emission of the pixel array is significantly increased owing to the enhanced spontaneous emission rate (characterized by a high Purcell factor of ≈2) of the ultra-dense NWs. We have demonstrated top-down NWs, where each NW (diameter ranging down to 200 nm) shows excellent uniformity and light output characteristics in direct contrast to bottom-up grown NW heterostructures. The results of this study establish a viable route for realizing nanoscale pixels with high luminescence stability and wafer-scale uniformity with high (>20%) indium composition InGaN/GaN LED heterostructures, for next-generation near-eye displays.
超密集(每英寸超过4000像素)且高度稳定的全色III族氮化物纳米级像素对于虚拟现实和增强现实眼镜等近眼显示技术至关重要。在此背景下,基于氮化铟镓的长波长绿色微尺度发光二极管面临着重大瓶颈,如效率低和波长稳定性不足。这些挑战与非辐射表面缺陷的存在以及应变诱导的量子限制斯塔克效应有关。在此,我们报告了绿色氮化铟镓/氮化镓发光二极管的纳米级像素化,其采用了应变工程超密集纳米线(NW)阵列,对应于每英寸约36000像素。对于超过3个数量级的注入电流密度(从约4 A/cm²到约1 kA/cm²),NW像素阵列在约500 nm处表现出稳定的峰值波长发射。观察到的波长稳定性增强(蓝移仅减少约4 nm)直接源于通过NW中轴向多量子阱的应变弛豫实现的内置电场抑制。有限差分时域模拟表明,由于超密集NW的自发发射率增强(以约2的高珀塞尔因子为特征),像素阵列的发射显著增加。我们展示了自上而下生长的NW,与自下而上生长的NW异质结构形成直接对比,每个NW(直径低至200 nm)都表现出优异的均匀性和光输出特性。这项研究的结果为实现具有高发光稳定性和晶圆级均匀性的纳米级像素建立了一条可行途径,该像素采用高铟成分(>20%)的氮化铟镓/氮化镓发光二极管异质结构,用于下一代近眼显示器。