Suppr超能文献

SafeRPlan:用于椎弓根螺钉放置术中规划的安全深度强化学习。

SafeRPlan: Safe deep reinforcement learning for intraoperative planning of pedicle screw placement.

机构信息

ROCS, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland; Department of Computer Science, ETH Zurich, Universitätstrasse 6, 8092 Zürich, Switzerland; ETH AI Center, ETH Zürich, Andreasstrasse 5, 8092 Zürich, Switzerland.

ROCS, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008 Zürich, Switzerland.

出版信息

Med Image Anal. 2025 Jan;99:103345. doi: 10.1016/j.media.2024.103345. Epub 2024 Sep 16.

Abstract

Spinal fusion surgery requires highly accurate implantation of pedicle screw implants, which must be conducted in critical proximity to vital structures with a limited view of the anatomy. Robotic surgery systems have been proposed to improve placement accuracy. Despite remarkable advances, current robotic systems still lack advanced mechanisms for continuous updating of surgical plans during procedures, which hinders attaining higher levels of robotic autonomy. These systems adhere to conventional rigid registration concepts, relying on the alignment of preoperative planning to the intraoperative anatomy. In this paper, we propose a safe deep reinforcement learning (DRL) planning approach (SafeRPlan) for robotic spine surgery that leverages intraoperative observation for continuous path planning of pedicle screw placement. The main contributions of our method are (1) the capability to ensure safe actions by introducing an uncertainty-aware distance-based safety filter; (2) the ability to compensate for incomplete intraoperative anatomical information, by encoding a-priori knowledge of anatomical structures with neural networks pre-trained on pre-operative images; and (3) the capability to generalize over unseen observation noise thanks to the novel domain randomization techniques. Planning quality was assessed by quantitative comparison with the baseline approaches, gold standard (GS) and qualitative evaluation by expert surgeons. In experiments with human model datasets, our approach was capable of achieving over 5% higher safety rates compared to baseline approaches, even under realistic observation noise. To the best of our knowledge, SafeRPlan is the first safety-aware DRL planning approach specifically designed for robotic spine surgery.

摘要

脊柱融合手术需要高度精确地植入椎弓根螺钉植入物,这必须在接近重要结构的关键位置进行,而这些结构的解剖结构只能通过有限的视角进行观察。机器人手术系统已经被提出以提高放置的准确性。尽管取得了显著的进展,但目前的机器人系统仍然缺乏在手术过程中持续更新手术计划的先进机制,这阻碍了实现更高水平的机器人自主性。这些系统采用传统的刚性注册概念,依赖于术前规划与术中解剖结构的对齐。在本文中,我们提出了一种用于机器人脊柱手术的安全深度强化学习(DRL)规划方法(SafeRPlan),该方法利用术中观察来实现椎弓根螺钉放置的连续路径规划。我们方法的主要贡献是(1)通过引入基于距离的感知不确定性的安全过滤器,确保安全操作的能力;(2)通过使用基于术前图像预先训练的神经网络对解剖结构的先验知识进行编码,从而补偿不完全的术中解剖信息的能力;(3)由于采用了新颖的领域随机化技术,因此能够对未见过的观察噪声进行泛化。通过与基线方法、黄金标准(GS)的定量比较和专家外科医生的定性评估来评估规划质量。在人体模型数据集的实验中,即使在现实的观察噪声下,我们的方法也能够实现比基线方法高出 5%的安全性。据我们所知,SafeRPlan 是专门为机器人脊柱手术设计的第一个具有安全意识的 DRL 规划方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验