Sohrabi-Ashlaghi Ahmadreza, Azizi Narges, Abbastabar Hedayat, Shakiba Madjid, Zebardast Jayran, Firouznia Kavous
Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran.
Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Science, Tehran, Iran.
Eur J Radiol. 2024 Dec;181:111739. doi: 10.1016/j.ejrad.2024.111739. Epub 2024 Sep 16.
Intracranial aneurysms (IAs) pose a severe health risk due to the potential for subarachnoid hemorrhage upon rupture. This study aims to conduct a systematic review and meta-analysis on the accuracy of radiomics features derived from computed tomography angiography (CTA) in differentiating ruptured from unruptured IAs.
A systematic search was performed across multiple databases for articles published up to January 2024. Observational studies analyzing CTA using radiomics features were included. The area under the curve (AUC) for classifying ruptured vs. unruptured IAs was pooled using a random-effects model. Subgroup analyses were conducted based on the use of radiomics-only features versus radiomics plus additional image-based features, as well as the type of filters used for image processing.
Six studies with 4,408 patients were included. The overall pooled AUC for radiomics features in differentiating ruptured from unruptured IAs was 0.86 (95% CI: 0.84-0.88). The AUC was 0.85 (95% CI: 0.82-0.88) for studies using only radiomics features and 0.87 (95% CI: 0.83-0.91) for studies incorporating radiomics plus additional image-based features. Subgroup analysis based on filter type showed an AUC of 0.87 (95% CI: 0.83-0.90) for original filters and 0.86 (95% CI: 0.81-0.90) for studies using additional filters.
Radiomics-based models demonstrate very good diagnostic accuracy in classifying ruptured and unruptured IAs, with AUC values exceeding 0.8. This highlights the potential of radiomics as a useful tool in the non-invasive assessment of aneurysm rupture risk, particularly in the management of patients with multiple aneurysms.
颅内动脉瘤(IAs)因破裂时可能发生蛛网膜下腔出血而对健康构成严重风险。本研究旨在对计算机断层扫描血管造影(CTA)衍生的放射组学特征在区分破裂与未破裂颅内动脉瘤方面的准确性进行系统评价和荟萃分析。
在多个数据库中进行系统检索,以获取截至2024年1月发表的文章。纳入使用放射组学特征分析CTA的观察性研究。使用随机效应模型汇总用于区分破裂与未破裂颅内动脉瘤的曲线下面积(AUC)。基于仅使用放射组学特征与放射组学加其他基于图像的特征的使用情况以及用于图像处理的滤波器类型进行亚组分析。
纳入了6项研究,共4408例患者。放射组学特征在区分破裂与未破裂颅内动脉瘤方面的总体合并AUC为0.86(95%CI:0.84 - 0.88)。仅使用放射组学特征的研究的AUC为0.85(95%CI:0.82 - 0.88),纳入放射组学加其他基于图像的特征的研究的AUC为0.87(95%CI:0.83 - 0.91)。基于滤波器类型的亚组分析显示,原始滤波器的AUC为0.87(95%CI:0.83 - 0.90),使用附加滤波器的研究的AUC为0.86(95%CI:0.81 - 0.90)。
基于放射组学的模型在区分破裂与未破裂颅内动脉瘤方面显示出非常好的诊断准确性,AUC值超过0.8。这突出了放射组学作为一种有用工具在无创评估动脉瘤破裂风险方面的潜力,特别是在多发性动脉瘤患者的管理中。